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Abstract— Feature matching is a crucial component of com-
puter vision that has various applications. With the emergence
of Computer-Aided Diagnosis (CAD), the need for feature
matching has also emerged in the medical imaging field. In
this paper, we proposed a novel algorithm using the Ex-
plainable Artificial Intelligence (XAI) [1] approach to achieve
feature detection for ultrasound images based on the Deep
Unfolding Super-resolution Network (USRNET). Based on the
experimental results, our method shows higher interpretability
and robustness than existing traditional feature extraction and
matching algorithms. The proposed method provides a new
insight for medical image processing, and may achieve better
performance in the future with advancements of deep neural
networks.

I. INTRODUCTION

Ultrasonography is a widely used methodology for the
early clinical detection of various diseases. It plays a pivotal
part in clinical image based diagnosis for its efficiency,
low-cost, and convenience. For diagnostic accuracy, feature
matching is widely used in medical image processing since
the results can provide decision support for medical diag-
nosis. Consequently, computer aided diagnosis systems are
required in medical institutions to assist doctors in analyzing
and interpreting ultrasound images to improve the accuracy,
objectivity, and repeatability of examinations. Our task has
two components: feature detection and feature matching.
Feature detection segments and localizes significant inter-
esting points from the original ultrasound images. Feature
matching is used to visualize the correspondences between
features. Ultrasound images are different from regular images
since they usually suffer from severe noise, poor image
contrast, and shadowing artifacts, which makes it difficult
for doctors to identify whether patches of images are similar
or not.

In the state-of-the-art, many traditional methods for feature
detection has been proposed. Scale Invariant Feature Trans-
form (SIFT) [2] is a well-known detector, which utilizes
scale-invariant information and can adapt to rotation and
illumination changes. It can also avoid affine transformation
to some extent. Speeded Up Robust Feature (SURF) [3]
is an optimized version of SIFT. SURF constructs Hessian
Matrix to get all potential interesting points for final ex-
traction. Furthermore, SURF decreases feature descriptors to
achieve speedup. Differing from SIFT and SURF, Features
from Accelerated Segment Test (FAST) [4] applies corner
detection while setting a threshold and using non-maximum
suppression to reach higher accuracy. Oriented FAST and
Rotated BRIEF (ORB) [5] is based on the foundation of
FAST. For optimization, ORB applies BRIEF [6] as the

descriptor to save computational resources. However, these
algorithms are mainly focused on synthetic images and do
not have promising feature matching results on ultrasound
images.

To represent an algorithm with high interpretability and
robustness, we creatively utilize the XAI approach to
achieve feature detection and extraction on ultrasound im-
ages. Specifically, we implement guided back-propagation
to detect and extract features. The guided back-propagation
technique was originally used for the interpretability and
optimization of classification networks. We explore this
XAI approach to generate feature maps based on gradient
information. To capture the gradient information, we im-
plement guided back-propagation on state-of-the-art super-
resolution neural networks. In particular, we utilize the
Deep Unfolding Super-Resolution Network (USRNET) [7]
to generate gradients. Guided back-propagation was utilized
to achieve visualization by generating feature maps based
on these gradient information. To test the performance of
our proposed method, we collected data using our handheld
ultrasound device.

II. METHODOLOGY

In this section, we separate the proposed method into
two subsections. The first subsection introduces the proposed
XAI feature detector, which creatively utilizes guided back-
propagation [8] to detect features based on USRNET [7].
The second subsection introduces the Robust Independent
Elementary Features (BRIEF) [6] descriptor and Brute-force
feature matcher based on the detected features. The overall
architecture of the proposed XAI feature detector is shown
in Fig.1.

A. Feature detection

1) Guided Back-propagation: The concept of Explainable
Artificial Intelligence (XAI) is usually used by researchers to
create a clear insight of deep neural networks. Guided back-
propagation is a popular XAI technique, which was originally
utilized in classification networks. The original guided back-
propagation algorithm can generate saliency maps to reveal
the most significant features that impact the classification
tasks. In our proposed XAI feature detector, we explore
the guided back-propagation as a feature detector because
of its feature tracking speciality. However, differing from
the original application of guided back-propagation with
classification networks, we apply guided back-propagation
on super-resolution neural networks. The super-resolution
neural network can effectively enhance the image quality
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Fig. 1. The architecture of the proposed XAI feature detector.

of high-frequency regions in images. By utilizing a super-
resolution network, guided back-propagation can reveal the
features that have the greatest impact on the super-resolution
network. In this way, we can obtain the most significant high-
frequency feature information. Specifically, we implement
the Deep Unfolding Super-resolution Network (USRNET),
which is introduced in Sub-section 2.

Guided back-propagation [8] was proposed based on
vanilla back-propagation [9] and the deconvnet algorithm
[10]. The computations of vanilla back-propagation, Decon-
vNets and guided back-propagation can be summarized in
Fig.2. These algorithms are essentially identical except for
the computations when passing through the ReLU function
of convolution networks. The equation of ReLU activation
function (1) is:

f l+1
i = relu

(
f li
)
= max

(
f li , 0

)
(1)

In the forward pass, ReLU functions are handled by zeroing
out the negative gradient values. In vanilla back-propagation,
values that are zeroed out in the forward pass will also be
zeroed out during back-propagation. The back-propagation
equation (2) is shown below, where f represents the feature
maps generated by layers. R is an intermediate calculation
result of the back-propagation.
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In the deconvnet algorithm, the gradients travel back to the
image space through a deconvnet, which contains operations
like unpooling and deconvolution. In deconv implementation,
negative values are set to zero. Equation (3) summarizes this
step below.

Rl
i =

(
Rl+1

i > 0
)
·Rl+1

i (3)

Guided Back-propagation basically acts as a combination
of vanilla back-propagation and DeconvNets when passing
through the ReLU non-linearity. Blocks with negative val-
ues, either in the forward or in backward pass, are set to
zero. More precisely, similar to deconvnet, guided back-
propagation only allows positive error signals to travel back,
also like vanilla back-propagation, guided back-propagation
limits the input to positive values, as shown in Equation (4).

Rl
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(
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)
·
(
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i > 0
)
·Rl+1

i (4)

The computations of vanilla back-propagation, DeconvNets
and guided back-propagation can be summarized in Fig.2.
To generate the most significant feature maps with the least
independent noise, we implement guided back-propagation
on USRNET.

Fig. 2. Calculation maps of forward pass, vanilla back-propagation,
deconvnet and guided back-propagation.

2) Unfolding Super-resolution Network: To achieve fea-
ture detection, we apply guided back-propagation on [7]
the deep unfolding super-resolution network (USRNET).
The architecture of USRNET is shown in Fig.1. USRNET
combines features from both learning-based and model-based
methods for super resolution tasks [7]. It focuses on giving
the flexibility of handling different scale factors, blur kernels
and noise levels under a unified Maximum A Posteriori
(MAP) [11] framework in a single image super-resolution
scenario. The network consists of three major modules: data
module, prior module, and hyper-parameter module.

Data module D: This module constructs an output image
of higher resolution zk from the input of original image y,
scale factor s, output of the previous prior module xk−1,
and the trade-off hyper-parameter αk. The process can be
summarized as minimizing a weighted combination of the
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Fig. 3. Comparison of features extracted by different algorithms. The first image is the original. The second image reveals the feature points detected
by SIFT. The third image is processed by SURF. The fourth and fifth images are processed by FAST and ORB respectively. The last image is the feature
map generated by our proposed method.

data term
∥∥y− (z⊗ k) ↓s

∥∥ and the quadratic regularization
term

∥∥z− xk−1

∥∥2. The module [7] can be denoted as below.

zk = D(xk−1, s,k, y, αk) (5)

Prior module P: Following the data module, a prior
module is applied to denoise the processed image zk. The
denoising procedure is managed by a ResUNet [12]; thus
inheriting the ability of fast training and large capacity with
residual blocks. The network takes zk from the data module
and a noise level map βk. The output is the denoised image
xk, which can be used as the data module input image for the
next iteration. The prior module can be described as below.

xk = P(zk, βk) (6)

Hyper-parameter module H: A hyper-parameter module
is employed to control the output of the data and prior
modules. Specifically, the module predicts sets of α and
β from scale factor s and noise level σ, combined with a
constant trade-off parameter λ and penalty parameter µ. With
proper set-up of these modules, the network can achieve
the task of unfolding optimization; thus recovering higher
resolutions of the input image. More precisely, compared
to input images, those output counterparts not only have
higher resolution, but also details and edges. In other words,
most significant features are also enhanced by the super-
resolution neural network. Guided back propagation can
generate feature maps that contain the gradients of various
areas.

B. Feature Matching

After obtaining the feature gradient maps, a thresholding
method is applied to the map to binarize the points in the
map. Thus, the point locations can be conveniently extracted
and represented in a coordinate format. Then, the Robust
Independent Elementary Features (BRIEF) descriptor [6]
is employed to give identities to each point. BRIEF first
performs a Gaussian blur on the entire image to reduce noise.
For each given feature point, it randomly selects pairs of
locations within a square patch centered at a point. Each
pair of locations gives a binary result based on the following
equation, where p is the patch and x, y is a pair of locations.

τ(p;x,y) :=

{
1 if p(x) < p(y)
0 otherwise (7)

With the results from all the pairs, a binary string can be
constructed as:

fnd
(p) :=

∑
1≤i≤nd

2i−1τ (p;xi,yi) (8)

Finally, the descriptors and their corresponding points from
two images are matched through a brute-force matching
method [13]. The L2 norm is calculated over the Cartesian
products of the two set of interest points. Only the match
with highest L2 norm value is considered as a match. Then,
matches are pruned using the Random Sample Consensus
(RANSAC) algorithm [14] to iteratively eliminate low qual-
ity matches.

III. EXPERIMENTS

In this section, we present the detection and matching
results of the proposed XAI detector. We also compare with
other state-of-the-art methods to demonstrate improvement.

A. Data

The data was collected using the Clarius handheld ultra-
sound device focusing on two parts of the human body;
namely, knuckles and heart. To ensure consistency of fea-
ture positions and the time differences between the target
and reference images, we capture adjacent frames of an
ultrasound video as the experimental data. Consequently,
when implementing feature matching, straight lines represent
correct matches and oblique lines represents wrong matches.

B. Feature detection

First, we compare the feature detection results of the
proposed XAI Feature detector with state-of-the-art feature
detectors; namely, SIFT, SURF, FAST and ORB. The feature
detection results are shown in Fig.3. As the figure illustrates,
the feature points detected by SIFT and SURF are sparsely
distributed instead of being in a concentrated region. When
it comes to the FAST detector, the extracted feature points
mainly reveal the significant knuckle features. However,
FAST detector also detects some insignificant noisy points
at the bottom of the demo image. Compared to FAST, the
ORB detector can detect feature points concentrating in high-
frequency regions. But ORB cannot successfully detect the
features near the image boundaries. Compared to state-of-
the-art detectors, the proposed XAI detector can achieve
outstanding performance. To be specific, the XAI detector
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Fig. 4. Feature matching results on sample images. The two rows represent two different pairs of matching images separately. The first column illustrates
two pairs of target and reference images. The second column shows the matching results based on SIFT. The third column represents the matching results
using ORB detector. The last column shows the matching results using the proposed XAI detector.

can detect feature points localized in high-frequency regions.
The detected feature points can reveal the bone texture of
target areas without including independent noise points.

C. Feature matching

After the features are detected, matchings are computed
using the BRIEF descriptor and a brute-force matcher. The
performance is evaluated against ORB and SIFT with iden-
tical descriptor and matcher. The matching quality is deter-
mined by two important factors: the interest point coverage
and the accuracy of the descriptor. In our experiment, the
descriptor is uniform. Thus, the major difference is based
on the quality and quantity of interest points. Our method
outperforms ORB and SIFT by involving the corresponding
interest points across images. Fig.4 shows a side by side
comparison between the algorithms. From Fig.4 we can see
that the matching for the ORB algorithm has more correct
matches than SIFT. But, the ORB detector also leads to
more incorrect matches due to the detection of independent
noise. The SIFT algorithm produces less matches compared
with ORB, but the amount of incorrect matches is also
decreased. Finally, our method provides large amount of high
quality matches over the high frequency area and few wrong
matches. The proposed XAI detector outperforms ORB and
SIFT in terms of matching accuracy.

IV. CONCLUSION

In this paper, we proposed an XAI based feature detector,
which explores guided back-propagation to extract significant
features based on USRNET. The detection and matching
results outperform state-of-the-art detector. The XAI detector
generates promising results and provides new inspiration for
the study of automatic feature extraction and matching. Due
to the nature of USRNET, the feature detection was focussed
on high frequency areas. In the future, more effort will be
put on extending this method to the entire image. We believe
that the proposed method has great potential in identifying
and linking organ parts between medical images, thereby
contributing to the feasibility of automatic medical image
processing.
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