
  

  

Abstract— Left ventricular (LV) segmentation is an 

important process which can provide quantitative clinical 

measurements such as volume, wall thickness and ejection 

fraction. The development of an automatic LV segmentation 

procedure is a challenging and complicated task mainly due to 

the variation of the heart shape from patient to patient, 

especially for those with pathological and physiological changes. 

In this study, we focus on the implementation, evaluation and 

comparison of three different Deep Learning architectures of the 

U-Net family: the custom 2-D U-Net, the ResU-Net++ and the 

DenseU-Net, in order to segment the LV myocardial wall. Our 

approach was applied to cardiac CT datasets specifically derived 

from patients with hypertrophic cardiomyopathy. The results of 

the models demonstrated high performance in the segmentation 

process with minor losses. The model revealed a dice score for 

U-Net, Res-U-net++ and Dense U-Net, 0.81, 0.82 and 0.84, 

respectively. 
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I. INTRODUCTION 

The automatic identification of hypertrophic 
cardiomyopathy (HCM) using cardiac medical images is an 
emerging and challenging field. The development of medical 
imaging technologies provides the capability of early 
diagnosis and detection of the disease. Computed tomography 
(CT) among other imaging techniques is preferred for the 
visualization of the heart left ventricle (LV) and the evaluation 
of cardiomyopathies [1]. Segmentation and delineation of the 
left ventricle is a crucial step for the quantification of the 
morphological and pathological changes, providing important 
clinical variables, such as ejection fraction, end systolic and 
diastolic volume, wall thickness, etc. However, for most of the 
imaging modalities used, the manual segmentation of the heart 
is labor-intensive and time-consuming for a single subject [2]. 
Thus, automating the segmentation is highly desirable as it can 
provide significant contribution both in the clinical and the 
bioengineering domain. 

Lately, relevant studies in LV segmentation focus mostly 
on deep learning (DL) techniques, as their results provide high 
accuracy. Specifically, the cardiac segmentation studies, 
utilize methods based on convolutional neural networks 
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(CNN). A widely used established architecture, the U-Net [3], 
is used for biomedical image segmentation. Specifically, Tong 
et al. [4] proposed a deeply supervised 3D U-Net for fully 
automatic whole heart segmentation. In the training stage, a 
3D U-Net was developed to detect the heart and segment the 
region of interest (ROI), where the training dataset was 
artificially augmented and, finally, a refined 3D U-Net was 
trained. Several studies [5, 6] have been also conducted by 
combining a localization network for the detection of the heart 
with 3D fully convolutional networks (FCNs), which were 
applied to detect the segmentation ROI, allowing the network 
to be more effective by focusing on the relevant anatomical 
regions. These methods achieve better segmentation accuracy, 
mainly due to the smaller variations in the image intensity 
distribution across different CT scanners and better image 
quality [7]. 

A variety of methods rely on the volumetric information 
extracted by the heart that used to train CNNs in different 
views (axial, sagittal, coronal views) in a 2D manner. Wang et 
al. [8] trained three independent orthogonal CNNs in order to 
segment different planes. Particularly, they employed a U-Net 
architecture that detects the ROI of the heart and classifies the 
pixels into different substructures without losing the original 
resolution. Additionally, they also integrated into the proposed 
framework a shape context for the segmentation refinement, 
whereas Mortazi et al. [9] developed an adaptive fusion 
strategy to combine multiple outputs from different views, 
with high segmentation accuracy calculated by the Dice 
Similarity Coefficient (DSC). 

Different DL approaches utilize different loss functions 
(focal loss, Dice loss, categorical cross-entropy), which are 
combined to address the class imbalance among different 
ventricular structures and improve the segmentation 
performance [10, 11]. More recently, Jun Guo et al. [12] 
developed a 3D deeply supervised U-Net, which incorporates 
attention gates (AGs) to focus on the myocardial boundary 
structures and segment left ventricular myocardium contours. 
The literature uses mostly the sagittal view of the cardiac MRI 
scans, as these views provide a clear depiction of the LV as the 
targeted region of interest (ROI) is a circle (Apical to base 
LV). The anatomical shape depicted on the CT is more 
complex and challenging than the MRI. 
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The aim of this paper is to present an implementation and 
a comparison study of three state of the art deep neural 
networks of the U-Net family, which have demonstrated the 
best performance. To the best of our knowledge, they have not 
been utilized for LV segmentation from CT imaging datasets. 
Particularly, 2-D U-Net, ResU-Net++ and Dense-U-Net are 
implemented with the same initialization, in order to segment 
the LV myocardial wall and evaluate the performance of the 
outcomes. Both the three architectures were built in order to 
be functionable with CT data. Moreover, all the processing 
steps and the overall workflow were developed based on CT. 

II. MATERIALS AND METHODS 

A.  Dataset 

The dataset used in this study, was provided by the clinical 
partners of SILICOFCM project. It consists of anonymized CT 
scans from patients with HCM. A medical expert followed a 
manual segmentation procedure, in order to provide the 
ground truth labels for the LV area upon the CT frames. The 
stack of the DICOM set for each patient includes 300 slices 
with 512x512 pixels size and a 0.4mm of slice thickness. The 
total number of slices is 2704 from 7 patients. To better handle 
and reduce the complexity, the DICOM files were converted 
to NIfTI files. 

B. Deep Learning Network Architectures 

In this study we functionally reproduce three (published in 
the literature) deep learning architectures of the U-Net family, 
in order to train them from scratch on our data. Next, a short 
description of the implemented networks is presented. 

1)  U-Net 
The first U-net architecture developed by Ronneberger et al. 
[3] comprises two basic paths, the encoder and the decoder 
(Fig. 1 (A)). Particularly the encoder includes a convolution 
(and up convolution), max pooling, the ReLU as activation 
function at the end of each layer and a concatenation layer. 

Fig. 1(A) illustrates the U-Net architecture, where the blue 
boxes correspond to feature maps. The number of channels is 
depicted on the top of each box. The white boxes are copied 
feature maps and the arrows denote the different operations. 
The convolutions are responsible to extract the feature maps 
and the parameters, as the pooling operations are using a filter 
over each feature map, in order to progressively reduce the 
spatial size. 

2) ResU-Net++ 
The architecture of the ResU-Net++ is composed of the Deep 
Residual U-Net that exploits the strength of the deep residual 
learning and the U-Net. The ResU-Net++ proposed by Jha et 
al. [13] capitalizes the residual blocks, the squeeze and 
excitation block, Atrous Spatial Pyramidal Pooling (ASPP) 
and the attention block. The development of the ResU-Net++ 
architecture includes one stem block which is followed by 3 
encoder – decoder blocks and the ASPP. The residual unit is 
composed of a batch normalization, ReLU activation function 
and convolutional layers (Fig. 1 (B)). 

3) Dense-U-Net 
The Dense-U-Net was developed by Cai et al. [14] to 

improve the image resolution loss from the down sampling, in 
order to improve the accuracy. The developed architecture 
consists of a combination of the U-Net model and dense 
concatenations. Both the dense up-sampling and dense down-
sampling are symmetrical with skip connections. The Dense-

U-Net is composed of 5 dense blocks both in down-sampling 
and up-sampling as it is depicted in Fig. 1 (C). 

 

Figure 1.   The proposed detailed architectures of the A) U-Net [3], B) 

ResU-Net++ [13] and C) Dense-U-Net [14]. 

C. Data preprocessing and workflow 

Specific preprocessing steps are performed to enhance the 
CT images and visualize better the cardiac tissues and other 
substructures. The DICOM images and their annotations are 
sorted to achieve a linear match among the frames. The final 
output is a binary segmented mask. Fig. 2 depicts the workflow 
developed for the data preprocessing steps. 

 

Figure 2.  Workflow of the proposed pre-processing steps (1-8) before the 

data propagation into the network. 

Below the data cleansing, augmentation, normalization and 

the train-test steps, are presented in detail, as they are the most 

important steps. Moreover, this study focus to present this 

steps as they were developed from scratch, in order to 

parameterize the approach to the targeted problem. 

1) Data cleansing 
First, we perform data cleansing to remove the unwanted 

slices (such as those with no annotations, black slices where 
the LV is not visible). Mostly, the DICOM images contain 
useful information at the middle of the stack. For that reason, 
mostly these images are useful. On the other hand, the images 
from the edges are removed when the LV is not visible and 
they will confuse the models. The total slices with meaningful 
information from the annotated masks are 1532. Also, an 
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important option in the data cleansing stage is the selection of 
the class that we want to segment or discard (LV wall or blood 
pool). 

2) Augmentation 
Prior the augmentation, a resize of the dimensions was 

implemented, to remove unwanted information and diminish 
the total extracted parameters. Afterwards, augmentation is 
applied, where 20% of the total slices are being shifted and 
rotated randomly, resulting in 1838 slices in total. The rotation 
is performed by randomly choosing each time at a specified 
angle [-20°, -10°, -5°, 5°, 10°, 20°]. The augmentation 
technique must be as accurate as possible in order to be 
helpful. Most of the times, the augmentation is a critical step 
as it can confuse the network instead of boosting it. For that 
reason, the augmentation techniques must generate high 
quality images. 

3) Normalization 

The target is to achieve a consistent intensity in the data. 

The normalization procedure transforms the n-dimensional 

grayscale image 𝐼: {𝑋 ∈ 𝑅𝑛} → {𝑀𝑖𝑛, . . , 𝑀𝑎𝑥} into a new 

image within the normalized range. A grayscale digital image 

is normalized as: 

 𝐼𝑁 = (𝐼 − 𝑀𝑖𝑛)
𝑛𝑒𝑤𝑀𝑎𝑥−𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
+ 𝑛𝑒𝑤𝑀𝑖𝑛, (1) 

4) Train – test split of the dataset 

The learning rate for the training phase was defined 

0.0001 and the batch size 16 for all networks. Regarding the 

LV segmentation, it is defined as a binary classification 

problem where we used the binary cross-entropy as a loss 

function defined as: 

 𝐻𝑝(𝑞) = −
1

𝑁
 ∑ 𝑦𝑖  𝑁

𝑖=1 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖)log (1 −

𝑝(𝑦𝑖)),  (2) 

 

where, 𝑦 is the label and 𝑝(𝑦) is the predicted probability for 

all N points. 
To minimize any possible biased condition and evaluate 

the overall model performance, we performed the k-fold cross 
validation. The unbiased cross-validation was implemented 
with 5 (k) folds. The five folds were divided based on the 
number of frames, trying to achieve an equal spilt. This 
approach ensures that each fold, is an acceptable 
representation of the whole dataset. Successively, 5 iterations 
for both training and validation were performed, where at each 
iteration one-fold is used for the validation purposes and the 
rest 4 are used for the training process. The 5-fold cross 
validation resulted in 5 different outcomes which are 
summarized as mean values. 

The preprocessing pipeline is an essential step, as the 
output improves the segmentation process. Since the data have 
been pre-processed, the next step is to propagate the train-test 
modules (CT scans and the annotations are used) through the 
model. 

D. Comparison 

The parameterization of the three utilized architectures 
regarding the loss function, the learning rate and the epochs is 
identical, in order to compare the different outcomes with the 
same initialization. The accuracy was the baseline metric for 
the outcomes and the overall performance. Moreover, the loss 

metric was a critical factor as it indicates the percentage of the 
correct predictions. Except the statistical metrics, a 
quantitative parameter to evaluate the image outcomes is the 
Dice Coefficient (DC) score. The DC score indicates the 
overlapping percentage of the predicted mask upon the ground 
truth as: 

 𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓 =  
2𝑥𝑇𝑃

2𝑥𝑇𝑃+𝐹𝑃+𝐹𝑁
  . () 

𝑇𝑃: true positive, 𝐹𝑃=false positive and 𝐹𝑁=false negative. 

The DC is the most accurate way to describe the outcome of 

the segmentation process. 

III. RESULTS 

The testing was implemented on an Intel(R) CoreTM i7-
6700HQ CPU@ 2.4Hz, using a GeForce GTX 960m GPU. 
The pipeline was implemented using Python 3.7, Jupyter 
Notebook, TensorFlow-GPU, Cuda toolkit 9.0, cuDNN 
v.7.0.5 and Keras. The run time takes quite big amount of time 
(≈ 22h) to execute, as the input size was not diminished to 
256x256. The results indicated that the image preprocessing 
boosted and enhanced the network results. The preprocessing 
of the image is a critical step before the model training. High 
quality data with noise reduction and object removal, can 
improve the results of the predicted masks. 

A. Evaluation metrics 

Among the three used networks, the Dense-U-Net needed 
three times more time than the rest two, as the parameters were 
ten times more. Table I depicts the performance scores for all 
models. The Dense-U-Net architecture outperformed the other 
methods, as it was expected. Due to its architecture, it seeks 
features those other architectures do not. Dense-U-net has 
more complex layers where the extracted parameters from the 
feature maps are more. 

TABLE I: METRICS FOR THE MODEL AFTER THE TRAINING PROCESS. 

Networks 

Metrics 

Accuracy Loss 

Model Validation Model Validation 

U-Net 0.78 0.80 0.10 0.13 

Res-U-Net++ 0.80 0.80 0.15 0.17 

DenseU-Net 0.81 0.82 0.23 0.2 

The DC metric was calculated, in order to provide a better 

evaluation of the networks, as it evaluates the similarity among 

the predicted and the tested frames one by one. The total DC 

is presented with mean values, as each fold from the cross-

validation outputs a separate DC value. The simple U-Net 

yielded a mean DC 0.81, the Res-U-Net++ 0.82 and the Dense-

U-Net resulted in a DSC 0.84. 

Fig. 3 depicts the predicted masks from all the 

implemented networks. We can observe that the masks have 

quite good similarity among them, but a few abnormalities 

appear in some frames which lead to loss. The best results 

were obtained when the Dense-U-Net is employed. Its 

architecture is more deep looking for more detailed and 

complicated characteristics upon the image. 

The results indicated DC and performance accuracy near 

to 80% with data derived only from 7 patients and 2704 

DICOM images. The dataset was helpful, as it consists of clean 

data without much noise. 
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Figure 3.  Results from predicted maks. A) Preprocessed CT scan, B) 

Ground trouth C) Dense-U-Net, E) Res-U-Net, and D) U-Net. 

IV. DISCUSSION AND CONCLUSION 

In summary, all the descripted networks performed very 
well, although the limitations of the study. With further 
development and refinement, they can be used for the heart 
segmentation task and specifically for segmenting the LV 
structure. The axial CT scan view was chosen in this study, as 
this view provides 2D masks that map the entire LV. Also, 
clinical metrics can be obtained (wall thickness, ejection 
fraction, LV volume) from this view. 

In addition, the segmentation of the left ventricle is quite 
challenging, since there are very limited studies which focus 
on the axial view, as the LV shape is more complex. Using a 
small number of images and without optimization techniques, 
the results are more than acceptable. In this study, a functional 
comparison of the different architectures was performed. The 
evaluation was based on the accuracy of the predicted results 
and the DC. Moreover, the demonstrated DL networks are 
inherently good and can be extended to different applications. 
In conclusion, the important question to be solved in the future 
is how to merge large datasets with annotated labels to 
efficiently enhance the performance of DL networks. 

For that purposes, automated segmentation can be very 
helpful to the clinical experts as it can provide them useful 
anatomical information fast and accurate. 

V. LIMITATIONS 

This study has few limitations starting from the data. The 
number of the data should be enhanced in the future in order 
to boost the train process. Also, the experts that provide the 
ground truth masks, due to lack of time, they perform a fast 
manual segmentation that may result to different outcomes 
each time. At the end, the hardware specifications must be 
enhanced to reduce the run time and increase the 
computational resources. 
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