
  

  

Abstract— In recent years, polyp segmentation plays an 

important role in the diagnosis and treatment of colorectal 

cancer. Accurate segmentation of polyps is very challenging due 

to different sizes, shapes, and unclear boundaries. Making full 

use of multi-scale contextual information to segment polyps may 

bring better results. In this paper, we propose an enhanced 

multi-scale network for accurate polyp segmentation. It is 

composed of a multi-scale connected baseline (U-Net+++), a 

multi-scale backbone (Res2Net), three Receptive Field Block 

(RFB) modules, and four Local Context Attention (LCA) 

modules. Specifically, the baseline's multi-scale skip connections 

can aggregate features in both low-level and high-level layers. 

We have evaluated our model on three publicly available and 

challenging datasets (EndoScene, CVC-ClinicDB, Kvasir-SEG). 

Compared with other methods, our model achieves SOTA 

performance. It is noteworthy that our model is the only 

network that has achieved over 0.900 mean Dice on EndoScene 

and CVC-ClinicDB. 

I. INTRODUCTION 

Colorectal cancer (CRC) is one of the most common 
malignant tumors in the world. It has the third-highest 
mortality rate among all cancers for many years. Studies have 
shown that 95% of colorectal cancers are caused by colorectal 
adenomatous polyps. Therefore, early detection of polyps 
becomes particularly important. Colonoscopy is considered to 
be the best diagnostic tool for early examination and removal 
of polyps. However, early colonoscopy annotation requires an 
endoscopist to perform it manually, which tests the doctor's 
ability and endurance during the operation. Therefore, 
automatic and accurate polyp segmentation has important 
clinical significance.  

In recent years, with the rapid development of deep 
learning technology in a variety of computer vision tasks, 
polyp segmentation based on deep learning has also benefited. 
The Fully Convolutional Networks [5] is the pioneer of the 
auto image segmentation task, which replaces the full 
connection layer of the neural network with the convolution 
layer. Later, Ronneberger et al. introduced U-Net [6] for the 
task of medical image segmentation. It has a symmetrical 
U-shaped encoder-decoder architecture. The skip connection 
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between encoder and decoder is responsible for enhancing the 
fusion of shallow and deep features to improve the 
segmentation performance. At present, U-Net [6] has become 
the most popular baseline in medical image segmentation. 
Inspired by the success of U-Net [6], U-Net++ [7] and 
ResUNet++ [8] expanded the original U-Net's architecture 
respectively. For example, U-Net++ [7] designed nested and 
dense skip connections to achieve the fusion of different 
features. And ResUNet++ [8] utilized residual learning 
mechanisms, attention modules, etc. They achieved better 
performance in the task of medical image segmentation. 
SFANet [9] used one encoder and two decoders to predict the 
region and boundary of polyps respectively, and it proposed a 
loss function to improve the region segmentation and 
boundary detection of polyps. In addition, PraNet [10] 
introduced at MICCAI 2020 used a parallel partial decoder 
(PPD) to combine features to obtain rich contextual 
information and leveraged reverse attention (RA) module to 
further mine the boundary cues, which has outperformed most 
cutting-edge models by a large margin. However, we believe 
that most methods do not make full use of multi-scale 
information and better attention mechanisms to deal with the 
size and shape of polyps and the boundaries of polyps. 

Polyp segmentation needs a powerful multi-scale learning 
strategy and attention mechanism due to the challenging 
characteristics of polyps, such as size, shape, unclear 
boundaries, etc. Thus, we assume that the simultaneous 
processing of polyp regions and boundaries is the core of 
accurate polyp segmentation. 

In this paper, we propose a new network called Enhanced 
Multi-Scale Network (EMS-Net) for accurate polyp 
segmentation. Firstly, we use a series of multi-scale methods 
to enhance the extraction of multi-scale features. Then we 
utilize the Local Context Attention (LCA) module [4] to 
increase attention to polyp boundaries. We have conducted 
three different experiments to verify our proposed model. 
Please refer to our experiments (Part.Ⅲ) for more details. 

In summary, the main contributions of our paper are as 
follows: 

• We propose a novel multi-scale learning network 
EMS-Net, which is a medical image segmentation 
neural network for accurate polyp segmentation tasks. 
It uses Res2Net [2] as the backbone and U-Net+++ [1] 
as the baseline. So it is designed with an 
encoder-decoder architecture. In addition, our model 
takes advantage of the Receptive Field Block (RFB) 
module and Local Context Attention (LCA) module. 
Since we have introduced an enhanced multi-scale 
learning strategy, our model has a stronger ability to 
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Fig. 1.  Block diagram of the proposed EMS-Net architecture. 

 

extract and learn polyp features to better cope with the 
challenges in polyp segmentation. 

• Our experiments demonstrate that the proposed 
EMS-Net achieves state-of-the-art results on three 
widely used public and challenging datasets. 

II. METHOD 

A.   Architecture 

Fig. 1 shows the architecture of our EMS-Net, which is 
consisted of an encoder backbone and a decoder. We use 
Res2Net [2] as our encoder to extract fine-grained features 
efficiently, which contains five encoder blocks. Differently, 
the decoder branch only has four decoder blocks and a series 
of Local Context Attention (LCA) modules for accurate polyp 
boundary segmentation. Then the deepest feature map (the 
orange block) plays a role in multi-scale skip connections. 
Each decoder block is composed of five sub-blocks from 
EMS-Net and generates a prediction map with a different 
resolution. We adopt deep supervision for these prediction 
maps. Inspired by U-Net+++ [1], we use the RFB module to 
enhance its full-scale skip connections to obtain richer 
multi-scale features. Each component will be elaborated as 
follows. 

B.   Multi-Scale Skip Connection 

We use the U-Net+++ [1] as the baseline for its advantage 
of multi-scale skip connections. Fig. 2 illustrates the 
construction of the multi-scale feature map of 
Decoder-Block4. Encoder-Block1, Encoder-Block2, and 
Encoder-Block3 apply different max pooling and convolution 
operations to obtain a feature map generated by 
Encoder-Block4 with the same size and channels. The 
Encoder-Block5 utilizes bilinear interpolation and 
convolution operation to get the corresponding feature map. 
Then, we concatenate these five feature maps together. After 
concatenation, we perform a 3×3 convolution operation, each 

of which is followed by batch normalization and then by a 
ReLU activation function. Eventually, we get the multi-scale 
feature map of the Decoder-Block4. This sufficient context 
information can improve the performance of segmentation. 

 
Fig. 2.  Overview of the Multi-Scale Skip Connection. 

 

C.   RFB Module 

The Receptive Field Block module [3] can generate 
different receptive fields to capture multi-scale information 
and enhance the deep features learned from the backbone. It 
consists of a multi-branch with different kernel size 
convolution and dilated convolution layers. Finally, it utilizes 
a 1×1 convolution to combine these features and produce the 
corresponding output. We apply the RFB module to the deep 
skip connections and after Encoder-Block5. On the one hand, 
it strengthens the transmitted deep features between the 
decoder and the encoder. On the other hand, it emphasizes the 
deepest features to better locate polyps. 

D.   LCA Module 

The attention mechanism has been widely employed in 
semantic segmentation tasks. The attention mechanism 
determines which part of the neural network requires more 
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attention and enhances the quality of the features to promote 
the results. Therefore, we utilize the Local Context Attention 
(LCA) module [4] in the decoder branch. LCA module 
contains two inputs, the feature map generated by the decoder 
and its corresponding prediction map. LCA can better refine 
the multi-scale feature maps generated by the decoder to 
enhance the attention to the polyp boundary. 

E.   Loss Function 

In binary cross-entropy (BCE) loss, it assigns equal 
weights to all pixels. However, in colonoscopy images, the 
number of pixels of some polyps is far less than the number 
of background pixels. It will make the model biased to the 
background and lead to poor results. Different from the 
standard BCE loss, the weighted BCE loss pays more 
attention to foreground pixels rather than background 
pixels. 

In this paper, we utilize the combination of a weighted 
binary cross-entropy (BCE) loss and a Dice loss as the loss 
function. Therefore, our loss function is defined as follows: 

ℒtotal = 𝜆ℒBCE + ℒDice   
where λ is set to 0.5. 

III. EXPERIMENTS AND RESULTS 

A.  Dataset 

Our three polyp segmentation datasets are the same as [10], 
namely EndoScene [12], CVC-ClinicDB [13], and 
Kvasir-SEG [14]. The three datasets have a total of 1762 
images. The training set consists of 1540 images without data 
augmentation, including 900 images in Kvasir-SEG and 550 
images in CVC-ClinicDB. And the testing set has the 
untrained remaining data from the three datasets mentioned 
above. 

B. Implementation Details and Evaluation metrics 

Our model is implemented in the PyTorch framework, 
which is trained and tested on an NVIDIA Tesla P100 GPU 
with 16GB memory. We train our model for 100 epochs using 
Adam optimizer, with a learning rate is of 1e-4 and batch size 
8. All the images are resized to 352×352 and employ a 
multi-scale training strategy {0.75, 1, 1.25} rather than data 
augmentation. 

In the task of polyp segmentation, most cutting-edge 
models[8,10] use two metrics (mean dice and mean IoU) for 
quantitative evaluation, so we also use these two metrics to 
evaluate our model. Moreover, [10] presents a publicly 
available and comprehensive benchmark for existing SOTA 
models. We also use the other four metrics (wFm, Sm, MAE, 
maxEm) mentioned in this benchmark for comparison so that 
we can better demonstrate the advantages of the performance 
of our model. 

C. Results on the EndoScene Dataset 

We compare our EMS-Net with UNet [6], UNet++ [7], 
SFANet [9], and PraNet [10] on the test set of EndoScene. As 
shown in Table 1, our method achieves the best performance 
over five metrics and outperforms other SOTA methods by 
large margins. Notably, our method is the only model that has 
achieved 0.900 mean Dice, a 3.33% improvement over the 
second-best algorithm. And we can also see that EMS-Net 
outperforms the PraNet [10] by 4.64% in mIoU. Especially, 

the dice coefficient and mIoU scores are important metrics for 
semantic segmentation tasks. 

TABLE I.  QUANTITATIVE RESULTS ON THE ENDOSCENE DATASET, 
COMPARING WITH OTHER STATE-OF-THE-ART METHODS. 

Method mDice mIoU wfm Sm maxEm MAE 

U-Net 0.710 0.627 0.684 0.843 0.876 0.022 

U-Net++ 0.707 0.624 0.687 0.839 0.898 0.018 

SFA 0.467 0.329 0.341 0.640 0.817 0.065 

PraNet 0.871 0.797 0.843 0.925 0.972 0.010 

EMS-Net 0.900 0.834 0.885 0.943 0.969 0.006 

TABLE II.  QUANTITATIVE RESULTS ON THE CVC-CLINICDB 

DATASET, COMPARING WITH OTHER STATE-OF-THE-ART METHODS. 

Method mDice mIoU wfm Sm maxEm MAE 

U-Net 0.823 0.755 0.811 0.889 0.954 0.019 

U-Net++ 0.794 0.729 0.785 0.873 0.931 0.022 

ResUNet 0.779 n/a n/a n/a n/a n/a 

ResUNet++ 0.796 0.796 n/a n/a n/a n/a 

SFA 0.700 0.607 0.647 0.793 0.885 0.042 

PraNet 0.899 0.849 0.896 0.936 0.979 0.009 

EMS-Net 0.923 0.874 0.923 0.949 0.974 0.008 

TABLE III.  QUANTITATIVE RESULTS ON THE KVASIR-SEG DATASET, 
COMPARING WITH OTHER STATE-OF-THE-ART METHODS. 

Method mDice mIoU wfm Sm maxEm MAE 

U-Net 0.818 0.746 0.794 0.858 0.893 0.055 

U-Net++ 0.821 0.743 0.808 0.862 0.910 0.048 

ResUNet 0.791 n/a n/a n/a n/a n/a 

ResUNet++ 0.813 0.793 n/a n/a n/a n/a 

SFA 0.723 0.611 0.670 0.782 0.849 0.075 

PraNet 0.898 0.840 0.885 0.915 0.948 0.030 

EMS-Net 0.897 0.842 0.889 0.915 0.943 0.026 

 

D. Results on the CVC-ClinicDB Dataset 

On CVC-ClinicDB dataset, we compare our EMS-Net 
with UNet [6], UNet++ [7], ResUNet [11], ResUNet++ [8], 
SFANet [9] and PraNet [10]. The evaluation results of all the 
models are listed in Table 2. It shows that our method 
achieves the best performance over five metrics. Similarly, 
our method is the only model that has achieved 0.900 mean 
Dice, with Dice of 0.923. Then EMS-Net achieves a mIoU of 
0.874 which is 2.94% higher than PraNet [10]. Fig. 3 shows 
the qualitative results on CVC-ClinicDB test set. A careful 
visual analysis of the result shows that EMS-Net produces 
better segmentation results as compared to the PraNet. Our 
model outputs a better boundary and the prediction is more 
accurate. 

E.   Results on the Kvasir-SEG Dataset 

Table 3 presents the quantitative results on Kvasir-SEG 
dataset. We have compared our method with UNet [6], 
UNet++ [7], ResUNet [11], ResUNet++ [8], SFANet [9] and 
PraNet [10]. It shows that EMS-Net achieves the best results 
on four metrics. Both we and PraNet [10] have achieved 
SOAT performance on this dataset and outperformed other 
baseline methods by large margins. Some qualitative results 
on Kvasir-SEG test set are shown in Fig. 4. From the figure, 
we can see that our model can precisely segment the polyp 
tissues in some challenging cases, such as small polyps and 
homogeneous regions. 
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Fig. 3.  Comparison of qualitative results between PraNet and EMS-Net on 

challenging images from CVC-ClinicDB. 

 

 
 

Fig. 4.  Comparison of qualitative results between PraNet and EMS-Net on 

challenging images from Kvasir-SEG. 

 

IV. CONCLUSION 

In this paper, we suppose that more powerful and more 
effective multi-scale learning is essential to improve the auto 
segmentation of polyps. Based on this inspiration, we propose 
a novel encoder-decoder network named EMS-Net with a 
reinforced multi-scale skip connection to better capture 
fine-grained details and coarse-grained semantics. The RFB 
module was used for obtaining multi-scale receptive fields and 
enhancing deep skip connections. The LCA module enhanced 
the attention of polyp boundary. Experimental results on three 
public and challenging datasets demonstrate that our model 
achieves SOTA performance. Notedly, EMS-Net is the only 
model that has achieved over 0.900 mean Dice both on 
EndoScene and CVC-ClinicDB. In the future, we plan to 
optimize our model for greater performance. In this way, it can 
be used in more medical image segmentation tasks to 
contribute to the development of deep learning in the field of 
medicine. 
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