
  

  

Abstract— We proposed a sleep EEG-based brain age 

prediction model which showed higher accuracy than previous 

models. Six-channel EEG data were acquired for 6 hours sleep. 

We then converted the EEG data into 2D scalograms, which 

were subsequently inputted to DenseNet used to predict brain 

age. We then evaluated the association between brain aging 

acceleration and sleep disorders such as insomnia and OSA.  

The correlation between chronological age and expected brain 

age through the proposed brain age prediction model was 80% 

and the mean absolute error was 5.4 years. The proposed model 

revealed brain age increases in relation to the severity of sleep 

disorders. 

In this study, we demonstrate that the brain age estimated using 

the proposed model can be a biomarker that reflects changes in 

sleep and brain health due to various sleep disorders. 

 

Clinical Relevance— Proposed brain age index can be a single 

index that reflects the association of various sleep disorders and 

serve as a tool to diagnose individuals with sleep disorders. 

 

I. INTRODUCTION 

Brain electrophysiological activities vary temporally during 

sleep. Different oscillations (slow < 4Hz vs fast wave) of 

brain activities during sleep imply different sleep stages (1 to 

4, shallow to deep sleep). Some characteristics seen on sleep 

electroencephalogram (EEG) may indicate alterations in 

normal sleep throughout various aging phases [1]. In healthy 

sleepers, known aging trends include a decrease in deep sleep, 

namely in stages 3-4 sleep, and increases in intermittent 

wakefulness and stage 1 sleep [2]. In addition to changes in 

the duration of each sleep stage, the pattern of oscillations 

representing different sleep stages also alters with age [3]. 
In terms of the pathophysiology, insomnia is characterized 

not only by slow wave deficiency, but also by hyperarousal 

of the central nervous system, affecting both rapid eye 

movement (REM) and non-rapid eye movement (NREM) 

sleep [4]. On the other hand, obstructive sleep apnea (OSA) 

is characterized by recurrent hypoxic, hypercapnic, and 

transient elevated blood pressure episodes that may damage 

or alter neural structures. 

Therefore, measurement of brain electrophysiological 

activities during sleep, such as EEG, can be used to predict 

 
S. Yook, H. Kim, Y. Miao and C. Park are with USC Stevens 

Neuroimaging and Informatics Institute, Keck School of Medicine of USC, 

University of Southern California, Los Angeles, CA 90033 USA 

(corresponding author to provide phone:415-894-7637; e-mail: 

soonhyun@usc.edu). 

H. R. Park is with Department of Neurology, Inje University College of 

Medicine, Ilsan Paik Hospital, Goyang, Korea (e-mail: okokree@gmail.com). 

the age of a given subject as well as pathological aging in 

relation to sleep disorders.  

The predicted age based on machine learning of brain 

structural or functional measurement often describes brain 

age as differing from chronological age due to neurological 
disease-dependent alterations in biological or physiological 

brain integrity. 

Most brain age prediction studies have been based on 

magnetic resonance imaging (MRI), which holds less relevant 

information for understanding brain aging in relation to brain 

activities during sleep, as opposed to sleep EEG. Sleep EEG, 

a part of the standard process of polysomnography, is largely 

available in sleep clinics and is a relatively inexpensive test 

compared to imaging techniques such as brain MRI. Thus, the 

sleep EEG is advantageous to machine learning and deep 

learning. 

Sun et al. predicted brain age through 102 feature sets using 
2,532 sleep EEG data, demonstrating a mean absolute error 

(MAE) of 7.6 years between brain age and chronological age 

[5]. Non-sleep resting-state EEG has also been used to predict 

brain age. A recent study based on machine learning 

techniques using a 468 EEG data set, which revealed a MAE 

of 6.87 weeks [6]. However, limitations in reducing the MAE 

of conventional models exist due to its use of a hand craft 

feature-based machine learning technique.  

Since different oscillations in time (slow vs fast wave) and 

magnitude (small vs large wave) can be characterized using 

the 2D scalogram, we converted sleep EEG data into the 
scalogram to explore its ability of predicting brain age. 

Finally, using the convolutional neural network (CNN) based 

3D DenseNet [7], we proposed a brain age prediction model 

to improve the accuracy of the existing EEG based models, 

and investigated the association between brain aging 

acceleration and sleep disorders such as insomnia and OSA. 

We also analyzed which polysomnography (PSG) parameters 

that quantified various aspects of sleep were explained by 

alterations in sleep EEG-based brain age. 

 

J. Kim is with School of Nursing, University of Nevada, LasVegas, NV 

89154 USA (jinyoung.kim@unlv.edu). 

D. C.Lim is with Division of Pulmonary, Critical Care, Sleep, University 

of Miami, Miami, FL 33146 USA (limdiane@med.miami.edu). 

E. Y. Joo is with Department of Neurology, Neuroscience Center, 

Samsung Medical Center, Samsung Biomedical Research Institute, School of 

Medicine, Sungkyunkwan University, Seoul, Korea (e-mail: ejoo@skku.edu). 

 

Soonhyun Yook, Yizhan Miao, Claire Park, Hea Ree Park, Jinyoung Kim, Diane C. Lim, Eun Yeon 

Joo, Hosung Kim 

Predicting brain age based on sleep EEG and DenseNet 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 245



  

II. METHODS 

A. Dataset 

The cross-sectional dataset analyzed in this study comprised 
of 4,215 polysomnograms from Samsung Medical Center. 

The current deep learning-based brain age prediction (BAP) 

model was improved by optimizing the parameters based on 

the 1186 healthy sleeper group EEG data. 

Each EEG data consisted of 6 channels (F3, F4, C3, C4, 

O3, O4). healthy, OSA, insomnia, and co-morbid insomnia 

and sleep apnea (COMISA) groups were defined by insomnia 

index (ISI) and apnea-hypopnea index (AHI) (Table 1). Also, 

for all groups, the age was limited from 20 to 70 years old. 

The median ages ± standard deviation (std) of healthy, OSA, 

insomnia, and COMISA groups were 42±14, 54±11, 52±14, 
and 56±11 years old, respectively.  

 
TABLE 1. DEFINITION OF HEALTHY, OSA, INSOMNIA AND 

COMISA GROUPS 

 

B. Brain age prediction model 

 
Figure 1. Overall scheme of brain age prediction model 

 

50 Hz low pass filtering was performed on all EEG data used 

for model training, with length fixed to 6 hours. The data was 

then converted into scalograms based on continuous Morlet 

wavelet transform as shown in Eq. (1) [8] and trained to 

simultaneously reflect the temporal and frequency 

characteristics of sleep EEG data (Fig 1).  

 𝑊𝑇𝑢,𝑎 = [𝑠, 𝜑𝑢,𝑎] = ∫ 𝑠(𝑡)𝜑𝑢,𝑎
∗ (𝑡)𝑑𝑡

∞

−∞
                         (1) 

where 

 𝜑𝑢,𝑎 =
1

√𝑎
𝜑 (

𝑡−𝑢

𝑎
)                                                            (2) 

 𝑊𝑇𝑢,𝑎  represent the wavelet coefficients. 𝜑𝑢,𝑎  represents a 

continuous wavelet, in which 𝑢 is the shift factor and 𝑎 is the 

scale factor of the wavelet. 𝜑𝑢,𝑎
∗  represents the complex 

conjugate of 𝜑𝑢,𝑎. 

We used DenseNet [7] to train the BAP model. The network 

used a previously established and well-tested three 

dimensional (2,160 time epochs x 16 frequency bands x 6 

EEG channels) C-P-T-D4-T-D4-T-D-P-FC architecture with 

121 layers, in which C is a convolution layer, P is a pooling 

layer, T is a transition layer, D is a dense block and FC is a 
fully-connected layer. Each layer is followed by ReLU non-

linearity. Mean squared error (MSE) was used as the loss 

function with an Adam optimizer, a learning rate of 0.001 and 

a batch size of 2. 10-fold cross validation was used to validate 

the BAP model. 

Brain age index(BAI), which reflects a subject’s relative 

brain health status, is measured by subtracting chronological 

age from predicted brain age [9]. Due to regression dilution 

[10, 11], however, it is also possible that regression models 

bias the predicted brain age toward the mean, underestimating 

the age of older subjects and overestimating the age of 

younger subjects [12]. When deriving the BAI, this bias thus 
needs to be corrected using a strategy that was introduced in 

[10].  

 

III. RESULTS 

After a 10-fold cross validation for the healthy sleeper group 

data, the correlation between chronological age and expected 

brain age through the proposed brain age prediction model 

was 80% and the MAE (std) was 5.4 (7.3) years. BAI of the 
sleep disorder groups increased as the corresponding 

chronological age increased. The difference between the BAI 

of the healthy sleeper group and sleep disorder groups 

increased as the corresponding chronological increased (Fig 

2). 

Group criteria No. patients 

Healthy 

20<age<70 

ISI ≤ 14 

AHI ≤ 15 

1186 (male: 751) 

OSA 
20<age<70 

AHI > 15 
1715 (male: 1482) 

Insomnia 
20<age<70 

ISI > 14 
649 (male: 280) 

COMISA 

20<age<70 

AHI > 15 

ISI > 14 

672 (male: 518) 
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Figure 2. Linear regression models fitted into healthy sleeper (grey), OSA 

(red), insomnia (yellow), and COMISA (green) subjects 

 
The average BAI of the OSA group was 2.9, insomnia 2.1, 

and COMISA 3.3 years (i.e., their brains 2.1-3.3 years older 

than healthy sleepers). As expected, the BAI of COMISA was 

the highest, followed by OSA and insomnia. In addition, sleep 

disorder groups were significantly different from the healthy 

sleeper group. Between sleep disorder groups, significant 

differences in BAI were found except for between OSA and 

COMISA (Table 2). 

 
TABLE 2. BAI OF OSA, INSOMNIA AND COMISA 

 BAI 

(std) 

P-value 

Healthy OSA Insomnia COMISA 

OSA 
2.9 

(8.4) 
**** - *** - 

Insomnia 
2.1 

(7.9) 
**** *** - *** 

COMISA 
3.3 

(8.5) 
**** - *** - 

* - Not significant, **** p < 0.0001, ***   p < 0.005 

 

 

TABLE 3. UNIVARIATE REGRESSION ANALYSIS OF BAI 

COVARIATES 

Covariate Whole data 

RC(SE) P-value 

OSA 2.262 (0.25) <0.001 

Insomnia 1.064 (0.27) <0.001 

Sleep stage 1 0.100 (0.01) <0.001 

Pittsburgh sleep quality index 0.100(0.03) 0.002 

Age 0.092 (0.01) <0.001 

Insomnia index 0.065 (0.02) <0.001 

Arousal index 0.060 (0.01) <0.001 

Body mass index 0.027 (0.03) 0.371 

Apnea hypopnea index 0.026 (0.01) <0.001 

Oxygen desaturation index 0.015 (0.01) 0.011 

Non-REM 0.009 (0.01) 0.261 

Beck depression inventory -0.003 (0.01) 0.828 

REM -0.044 (0.02) 0.014 

Sleep stage 2 -0.061 (0.01) <0.001 

Sleep stage 3 -0.126 (0.02) <0.001 

* Abbreviations: RC=regression coefficient, SE=standard error 

 

Coefficients of covariates in a linear regression model that 
estimated BAI are shown in Table 3. OSA had the highest 

positive regression coefficient with BAI (regression 

coefficient ± standard error: 2.262 ± 0.25; P < .001), followed 

by insomnia (1.064 ± 0.27; P < .001). Age (0.092 ± 0.01; P 

< .001), percentage of the length of sleep stage 1 (0.100 ± 0.01; 

P < .001), insomnia index (ISI) (0.065 ± 0.02; P < .001) [13], 

arousal index (0.060 ± 0.01; P < .001), apnea-hypopnea index 

(0.026 ± 0.01; P < .001), oxygen desaturation index (0.015 ± 

0.01; P < .001), and Pittsburgh Sleep Quality Index (0.100 ± 

0.03; P = .002) [14] were associated with accelerated brain 

aging. The percentages of the lengths of REM sleep (-0.044 ± 

0.02; P = .014), stage 2 (-0.061 ± 0.01; P < .001), and stage 3 
(-0.126 ± 0.02; P < .001) were negatively correlated with BAI. 

 

IV. DISCUSSION 

The BAI of each sleep disorder group was significantly 

different when compared to the healthy sleeper group. 

Furthermore, BAI was significantly different between the 

disease groups except between OSA and COMISA groups. In 
particular, significant differences were shown between the 

OSA and insomnia groups, suggesting that the proposed brain 

age prediction model can reveal differences in pathological 

brain aging between sleep disorder groups. In addition, the 

BAI of COMISA, which includes both OSA and insomnia 

diseases, was 1.2 and 0.4 higher than insomnia and OSA 

groups, respectively, which suggests that a co-morbid effect 

may contribute to increasing BAI. 

Univariate analysis of covariates demonstrated that, as 

expected, the presence of OSA and insomnia was strongly 

associated with an increase in BAI. Moreover, BAI increased 

as the insomnia index and apnea hypopnea index scores 
increased, indicating that the severity of insomnia and OSA is 

the main driving force of accelerated brain aging. In addition, 

oxygen desaturation index as the measurement related to the 

repetitive hypoxic events in OSA, may also lead to faster 

brain aging. These results demonstrate that the change in BAI 

estimated using the proposed BAP model is sensitive to the 

severity of sleep disorders. Chronological age in sleep 

disorder groups significantly correlated with faster brain 

aging; because it is assumed that the higher the age is, the 

longer is the period of exposure to the disease, it may be 
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harmful to brain health when sleep disorders are untreated for 

a long time. In terms of the percentage of sleep stage duration, 

it was revealed that the higher the BAI, the longer the shallow 

sleep and the shorter the deep sleep. Thus, the proposed BAI 

model reflected the sleep pattern-dependent aging shown in a 
prior study [15]. 

Although the proposed EEG-based brain age prediction 

model showed lower accuracy in healthy sleepers compared 

to image-based models (MAE: 5 vs 3 years), it nonetheless 

showed the highest performance among the existing EEG-

based brain age prediction models. Furthermore, our model 

showed sufficient sensitivity to the pathological aging 

difference between the OSA and the insomnia groups. In 

addition, sleep EEG has an advantage in brain aging study due 

to its greater accessibility in PSG and sleep clinics compared 

to that of imaging (e.g., costly installation and maintenance of 

MRI scanner). 
In conclusion, the BAI estimated using the proposed brain age 

prediction model can serve as a biomarker that reflects 

changes in sleep quality and brain health due to various sleep 

disorders and their severity and progression. 
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