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Abstract— Quadruped system is an animal-like model which
has long been analyzed in terms of energy efficiency during its
various gait locomotion. The generation of certain gait modes
on these systems has been achieved by classical controllers
which demand highly specific domain-knowledge and empirical
parameter tuning. In this paper, we propose to use deep
reinforcement learning (DRL) as an alternative approach to
generate certain gait modes on quadrupeds, allowing potentially
the same energetic analysis without the difficulty of designing
an ad hoc controller. We show that by specifying a gait mode
in the process of learning, it allows faster convergence of the
learning process while at the same time imposing a certain gait
type on the systems as opposed to the case without any gait
specification. We demonstrate the advantages of using DRL as
it can exploit automatically the physical condition of the robots
such as the passive spring effect between the joints during
the learning process, similar to the adaptation skills of an
animal. The proposed system would provide a framework for
quadrupedal trot-gallop energetic analysis for different body
structures, body mass distributions and joint characteristics
using DRL.

I. INTRODUCTION

Quadruped robot is a common research area and there
are numerous research topics which revolve around it, such
as energetic studies [1][2][3], design principles [4], gait
transition studies [5], etc. These studies play an important
role in shedding light on the gait nature of quadrupeds under
different circumstances such as varying walking speed [5]
and terrain conditions [6], giving us a better understanding of
quadrupeds as well as insights on better control strategies for
quadrupeds. However, to carry out gait studies on quadruped
robots, researchers have always been relying on hand-crafted
controllers to generate various gait locomotion on a case-
by-case basis [3][5][6][7][8], requiring domain expertise and
time-consuming parameters tuning. Therefore, it is desirable
to have a more general strategy which allows specific gait
generations on quadruped robots with minimum fine-tuning
in the search for optimal parameters.

In recent years, deep reinforcement learning (DRL) has
been gaining attention as an alternative to classical con-
trollers in quadruped robotic research [9][10][11]. This can
be due to several advantages that DRL has over classical
control strategies. One of the advantages is that the robotic
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Fig. 1. The control loop of a quadruped using deep reinforcement learning
(DRL). The raw action inputs are transformed into specific gait inputs as
specified by the user in the learning process, allowing the production of the
desired gait mode locomotion.

agents trained with DRL has the ability to generalize over
various situations unseen during training [12][13], giving the
robots adaptation skills similar to animals. DRL also requires
less parameter tuning, providing that the reward function
is well designed, as the learning process will find a set of
optimal parameters via the optimization process.

Unfortunately, DRL has some disadvantages. It is well
known that DRL requires long training time [14] and it
increases with the complexity of the robots. In the case of
quadruped research, there is no guarantee that the DRL-
trained agents will finally possess a well-known gait type,
making it difficult to carry out the same analysis as in the
case of classical controllers. There is however a handful of
work such as [15] which imposes a gait type or mode on
a quadruped system by introducing prior knowledge in the
DRL learning process.

In this paper, motivated by the potential of DRL in
quadruped system studies, we propose some ways to over-
come the downsides of DRL such that it is possible to be
used as an alternative to classical controllers in quadruped
energetic studies. Some of the contributions of this paper are:
• A method to specify a certain gait mode in the DRL

learning process, ensuring a deterministic gait type in
the output.

• Demonstrate that the gait mode specification speeds up
the learning process and allows energetic study between
two gait modes, i.e. the gallop and trot gaits, for two
different forward speeds.

• Demonstrate the advantage of DRL in exploiting the
body condition of the robots, i.e. the passive joint-spring
effect, similar to the adaptation skills of an animal. This
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also shows that the optimal set of parameters will be
determined using the same algorithm regardless of the
physical condition of the robots, in contrary to the case
of classical controllers.

II. METHOD

A. Simulated Quadruped Agent

In this paper, we will employ a quadruped model (Fig.
1) simulated using the Mujoco physics engine [16]. It is a
famous engine used in vaious DRL research [17][18] as it
simulates realistic physical properties, such as the interaction
between the feet of the quadruped and the ground. As this
paper is the first step to validate our idea, we are content
with using a simulated agent as it is low-cost and allows fast
experimentation. The agent has four limbs, with each limb
having three joints, i.e. the hip joint, the knee joint and the
foot joint. The stiffness and damping parameters of the joints
can also be modified to simulate various degrees of passive
joint-spring effect during the running motion.

B. Deep Reinforcement Learning

While it is possible to use any off-the-shelf DRL algo-
rithms to carry out our experiments, we have chosen the
state-of-the-art DRL algorithm, i.e. the SAC [17] algorithm.
The trained DRL policy will represent a complex function
which outputs the joint torques for the quadruped agent as a
function of time. The key characteristic of DRL concerned in
this paper is the reward function employed during the learn-
ing process. For our experiments, we require that the robot
moves forward in a two dimensional plane at a certain speed
while considering at the same time its energy consumption
issue. This can be translated to the reward function defined
by the Equation (1):

R(t) =−|v(t)− vtarget |−0.1 ·∑
i

Ai(t)2 (1)

At each time step t, the algorithm has to minimize two terms
in the reward function. The first term requires that the current
speed of the quadruped robot, v(t) matches as close as
possible to a given target speed vtarget . The second term of the
reward function is a representation of the energy consumed
by the quadruped agent, where Ai(t) is the magnitude of the
torque input for the joint i. This term is scaled by a small
coefficient so that the algorithm will not converge to a sub-
optimal solution of not moving at all.

In the following of this paper, the performance metric
is the distance travelled by the quadruped robot during a
simulation of total time steps T , with each time step ∆t being
evaluated as one unit of time in the simulation environment.
The performance metric can be written as the Equation (2):

Per f ormance = ∑
T

v(t) ·∆t (2)

In this study, we have used the energy expenditure in-
dex,which is the sum of the second terms of the reward
function (1) throughout a running trajectory, which can be
written as the Equation (3):

Energy index = ∑
T

∑
i

Ai(t)2 (3)

C. Gait Mode Specification

To specify a gait mode in the DRL learning process, we
will exploit the information that we have about certain gait
modes. In this paper, we are only considering the gallop and
the trot gaits. For the gallop gait, we know that the limbs on
the right side of the quadruped move symmetrically to the
limbs on the left side. In reality, there might be a slight phase
delay between the left and the right limbs in a gallop motion,
but we make an assumption that there is no phase delay in
this study. Therefore, the gallop gait is specified by having
the DRL policy to produce torque inputs for the left limbs of
the quadruped, then these torque inputs are copied identically
for the right limbs, imposing the symmetric property in a
gallop motion. This is translated as the Equation (4) where i
and j are the corresponding joints on the right side and the
left side of the quadruped respectively.

τrighti = τle f t j (4)

It must be noted that this does not constrain the DRL
algorithm from finding an optimal solution as it can still
freely output the torque for the left limbs while receiving
feedback about the overall body kinematic condition. For
the trot gait, the limbs on the right and the left side move
asymmetrically to each other. Therefore, the DRL policy
torque inputs for the left limbs are negated and copied to
the right limbs to impose a trot gait, as described by the
Equation (5):

τrighti =−τle f t j (5)

III. EXPERIMENTAL RESULTS

For all the experiments, the quadruped robot is trained
for 400 thousand time steps until convergence. Three trials
of each experiment are conducted and the average results
as well as the standard deviations are presented. The video
for the quadruped locomotion can be found at https://
youtu.be/RD4Uvskp9Zg.

A. Gait Mode Specification Effects

The effect of the gait mode specification on the DRL
learning process is presented in this subsection. As illus-
trated on the top of the Figure 2, the performance of the
quadruped robot with the trot and gallop mode specified
converged faster than the case without any specification,
showing that the gait mode specification has indeed sped
up the DRL learning process. On the bottom of the Figure
2, we can notice that the energy consumption for all cases
peaked near the beginning of the learning process as the
algorithm was exploring a gait locomotion starting from
random movements. This corresponds to the beginning phase
of the performance graph on the top of the Figure 2 where
the performance increased steeply. The energy consumption
decreased steadily in the remaining of the training process
as the DRL algorithm discovered a more energy efficient
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Fig. 2. The performance (top) and energy metric (bottom) comparison
throughout the training process between DRL-trained agents with no gait
specification (blue), with a trot mode specification (orange) and with a gallop
mode specification (green).

locomotion to move forward while spending less energy at
the same time, as specified by the second term in the reward
function (1). This clearly demonstrates the advantage of
using DRL over a classical controller as the reward function
can be easily tailored to take into account different aspects
when carrying out a task, much like the learning process of
living things.

Besides the faster convergence of the DRL learning pro-
cess, the gait mode specification also successfully imposed a
predetermined gait type on the quadruped robot. As shown
on the left of the Figure 3, the gait diagram of the quadruped
robot without any gait specification does not correspond to
any known gait type. It is a mix between the gallop gait
and the trot gait. Indeed, there is no guarantee that the
output locomotion of a DRL-trained robot would possess
the desired gait type, rendering the analysis done using
a classical controller [1][2][3][5] impossible. However, by
specifying a certain gait mode in the DRL training process
using our method, the output gait type resembles a well-
known gait type, as shown by the gait diagram of the gallop
mode and the trot mode in Figure 3.

Gallop mode Trot modeWithout specification

Fig. 3. The gait diagram for quadruped robots with different gait mode
specification. LF and RF represent the left fore limb and the right fore limb
respectively, while LH and RH represent the left hind limb and the right
hind limb respectively. The colored regions correspond to the stance phase
of each limb.

B. Energetic Study between Gallop and Trot Gaits

Studies such as [1][2][5][6] suggest that certain gait types
are more suitable for quadruped robots moving at certain
speed. In particular, for moving at a higher velocity, the
gallop gait is shown to be more energy efficient while
for a lower walking speed, the trot gait is believed to be
preferable. Motivated by this result, we have conducted a
performance and energetic analysis on the quadrupedal gait
motions generated by the DRL algorithm for two different
target speeds, i.e. a target speed of 3 m/∆t and a target speed
of 5 m/∆t, where ∆t is one time step of simulation. From the
performance graph on the top of the Figure 4, for moving
forward at a speed of 3 m/∆t, the performance of the trot
gait is slightly higher than the performance of the gallop gait.
However, for the moving speed of 5 m/∆t, the gallop gait is
better than the trot gait. While the performance difference
is small, this is still an encouraging result and shares a
similarity with the previously established results mentioned
earlier. In term of the energy consumption during the forward
motion, we can observe on the bottom of the Figure 4 that
the energy consumed by the galloping quadruped robots
is always significantly lower than the trotting quadruped
robots for both moving speeds. While this does not meet
our expectation that the trot gait would consume less energy
at a lower forward speed, one reason could be that the
forward speed of 3 m/∆t is not slow enough and the trot
gait is a running trot gait in reality. It could also be that
the passive joint-spring parameters of our quadruped robotic
model favors the gallop gait in our study. This is reasonable
as studies such as [19] has shown that the gallop gait is
more energy efficient as it exploits the passive spring energy
stored between the joints, helping the quadruped robot to
move forward easily. However, as the current study is still
at the early stage of a more complete study, we found that
the current result is promising as it shares some findings
established in previous studies.

C. DRL Exploitation of the Passive Joint-Spring Effect

In order to verify that the passive joint-spring effect plays
an important role in the energy efficiency of the forward
running motion of a quadruped as stated in [19][20], we have
varied the stiffness and the damping parameters of the joints
of a galloping quadruped robot from the default parameters
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Fig. 4. The performance (top) and energy metric (bottom) comparison
between DRL-trained agents with a trot mode specification and a target
speed of 3 (blue); with a trot mode specification and a target speed of 5
(orange); with a gallop mode specification and a target speed of 3 (green);
with a gallop mode specification and a target speed of 5 (red). The random
spikes on the curves are the deviations occurred during the DRL learning
process.

used in the previous sections. To have a more joint-spring
effect, we decreased the stiffness and the damping parameters
for all the joints. On the other hand, to have a less joint-
spring effect, the stiffness and the damping parameters are
increased. As illustrated by the performance graph on the top
of the Figure 5, the experimental results clearly show that the
more joint-spring effect a quadruped robot has, the higher
the galloping performance of the robot. In addition, from
the energy curves on the bottom of the Figure 5, the energy
consumption of the galloping motion also decreases as the
joint-spring effect increases. This result matches perfectly
with [19][20] as the passive joint-spring aids the running
motion and reduces the energy consumed by the quadruped
robot to gallop forward. This result also supports the idea
that the DRL algorithm can serve as a general algorithm
that can adapt to different physical conditions of a quadruped
robot to produce gait motions for analysis, contrary to the
case of classical controllers. Indeed, in the case of using
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Fig. 5. The performance (top) and energy metric (bottom) comparison
between DRL-trained agents with varying joint-spring effects, i.e. the
minimum joint-spring effect during running (blue), the default joint-spring
effect (orange), and the maximum joint-spring effect during running (green).
All the agents are with a gallop mode specification and a target speed of 3.

classical controllers to generate gait motions, the parameters
of the controllers need to be hand-tuned whenever there are
changes in the physical properties of the quadruped robot or
the experimental environment. DRL algorithms clearly have
an advantage over classical controllers in this regard [12][13].

IV. DISCUSSION

From our experimental results, by using the proposed gait
mode specification method, we have successfully imposed a
certain gait mode on the quadruped agent, eliminating the
random gait mode problem of a standard DRL algorithm.
At the same time, the proposed method has equally sped up
the learning convergence speed of the DRL algorithm. We
have also demonstrated that DRL algorithms are promising
as an alternative to classical controllers for gait generations in
quadruped energetic analysis. Coherent results were obtained
between our experiments and some related previous works
[1][2][5][6]. The advantage of DRL in exploiting the dynam-
ics properties of the quadruped agent is also demonstrated
through the passive joint spring experiment.
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While the current results are promising, however, there
are also several points that could be improved in the future.
Currently, the introduced gait mode specification works as
our expectation to impose a certain gait type on the DRL-
trained quadruped robot. We believe that a more complicated
gait mode specification method could be introduced to output
a more precise gait locomotion. For example, as we have
mentioned earlier that for a gallop gait, there might be a
slight phase delay between the limbs on each side of the
quadruped. A more complete gait mode specification method
could possibly deal with this issue.

In the future, a more realistic quadruped model could be
used for experiments. Ultimately, a real quadruped robot
could be employed to carry out the same experiments in
this paper to verify that the DRL-produced gait motion is
plausible as well in a real robot. Ideally, we would also
like to experiment with different gait types, so that we
can repeat the analysis done in works such as [1][2][5][6]
using DRL algorithms instead of classical controllers for gait
generations.

V. CONCLUSIONS

In this paper, we have proposed the gait mode spec-
ification method which speeds up the convergence of a
DRL algorithm as well as imposing a certain gait type
on the quadruped robot, contrary to the case without any
specification. DRL algorithms have also been demonstrated
to be potentially an alternative to classical controllers for
quadruped gait generations for energetic analysis. Moreover,
DRL algorithms equally show the ability to generalize to
situations never seen before, providing optimal locomotion
and removing the need for tedious manual parameters tuning
in classical controllers, as demonstrated in the passive joint
spring exploitation experiment. We believe that our work is
the first step towards a more general framework of locomo-
tion analysis in quadrupeds using DRL, contributing to the
research field of understanding quadrupedal motion control
on gait coordination.
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