
  

 

Abstract— Parkinson’s disease (PD) is a common 

neurodegenerative disease presenting with both motor and non-

motor symptoms. Among PD motor symptoms, gait impairments 

are common and evolve over time. PD motor symptoms severity 

can be evaluated using clinical scales such as the Movement 

Disorder Society Unified Parkinson’s Rating Scale part III 

(MDS-UPDRS-III), which depend on the patient’s status at the 

time of assessment and are limited by subjectivity. Objective 

quantification of motor symptoms (i.e. gait) with wearable 

technology paired with Deep Learning (DL) techniques could 

help assess motor severity. The aims of this study were to: (i) 

apply DL techniques to wearable-based gait data to estimate 

MDS-UPDRS-III scores; (ii) test the DL approach on 

longitudinal dataset to predict the progression of MDS-UPDRS-

III scores. PD gait was measured in the laboratory, during a 2 

minute continuous walk, with a sensor positioned on the lower 

back. A DL Convolutional Neural Network (CNN) was trained 

on 70 PD subjects (mean disease duration: 3.5 years), validated 

on 58 subjects (mean disease duration: 5 years) and tested on 46 

subjects (mean disease duration: 6.5 years). Model performance 

was evaluated on longitudinal data by quantifying the 

association (Pearson correlation (r)), absolute agreement 

(Intraclass correlation (ICC)) and mean absolute error between 

the predicted and true MDS-UPDRS-III. Results showed that 

MDS-UPDRS-III scores predicted with the proposed model, 

strongly correlated (r=0.82) and had a good agreement 

(ICC(2,1)=0.76) with true values; the mean absolute error for the 

predicted MDS-UPDRS-III scores was 6.29 points. The results 

from this study are encouraging and show that a DL-CNN model 

trained on baseline wearable-based gait data could be used to 

assess PD motor severity after 3 years. 

 

Clinical Relevance— Gait assessed with wearable technology 

paired with DL-CNN can estimate PD motor symptom severity 

and progression to support clinical decision making. 

I. INTRODUCTION 

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease after Alzheimer’s disease and 
presents both motor and non-motor symptoms [1].  Symptom 
severity assessment is performed by expert clinicians using 
clinical scales such as the Movement Disorder Society Unified 
Parkinson’s disease rating scale (MDS-UPDRS). The MDS-
UPDRS consists of four parts: mental dysfunction and mood, 
(Part I), motor experiences of daily living (Part II), motor 
symptoms severity (Part III: UPDRS-III), and treatment 
related motor and non-motor complications (Part IV). 
Although highly relevant and the clinical “gold standard”, 
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there are some notable limitations. Assessment is performed at 
one point in time and requires a face to face visit. This  
increases patient burden; does not capture fluctuations and is 
subjective in nature. Collectively this reduces reliability. 
Therefore, novel, objective, less time-consuming and 
inexpensive methods are required to accurately and reliably 
quantify PD motor severity and predict motor symptom 
decline in order to support clinical management and decision 
making. 

Among PD motor symptoms, gait impairments are 
common and evolve over time [2, 3]. Gait performance is 
considered a marker of global health and brain function [4]. 
Wearable technology allows gait to be measured in the clinic 
and continuously in  real-world [5]. Gait analysis has been 
shown to be sensitive to PD progression [2, 3]. Previous work 
showed how machine learning (ML) techniques applied to 
wearable-based gait data can accurately classify PD from 
healthy older adults [6-9]. ML and Deep Learning (DL) 
approaches have also been utilized to estimate UPDRS-III [10-
12]. A study by Parisi et al. [10] used gait, leg agility, and sit-
to-stand movements from 34 PD subjects measured with 
wearable technology to automatically quantify the UPDRS-III. 
Models trained on kinematic features showed only poor to 
moderate correlation between the estimated MDS-UPDRS-III 
and the real scores. A study by Zhan et al. [11], used voice, 
balance, gait, reaction time, and finger tapping data collected 
from 23 PD subjects, during scprited tests, by a smart phone 
over a period of 6 months to estimate a new disease severity 
score. Interestingly, Zhan et al. showed that gait features 
contributed most in the new mobile score and, the estimated 
score had high correlation (r=0.88) with the MDS-UPDRS-III. 
A study by Hssayeni et al. [12] used simulated activities of 
daily living measured in 24 PD subjects with sensors attached 
to the most affected wrist and ankle for estimating UPDRS-III. 
Models trained on signal-based extracted features showed a 
correlation between the estimated and real scroes of 0.62, with 
mean abosulte error of 7.5 points. 

Based on previous research, it is clear that most of the 
studies had a low sample size (n=23-34) and mainly relied on 
feature engineering (i.e. signal-based features extracted from 
the wearables). In addition, trained models were not validated 
or tested on longitudinal data, but testing was based on k-fold 
cross-validation.  

The overall objective of this work was to propose a DL 
CNN based model architecture that receives as an input raw 
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sensor data, rather than extracted features, in order to predict 
PD motor severity (i.e. MDS-UPDRS-III score). Specifically, 
we aim to: (i) apply DL techniques by training the model using 
time-point 1 (T1) gait data and MDS-UPDRS-III scores; (ii) 
validate the proposed approach on a longitudinal dataset: 
trained model will be tested on gait data collected after 3 years 
(T3) from T1, to predict MDS-UPDRS-III progression. 

II. METHODS 

A. Data Collection 

119 PD participants were recruited between June 2009 and 
December 2011 from the Incidence of Cognitive Impairment 
in Cohorts with Longitudinal Evaluation-Gait study (ICICLE-
GAIT), which was a collaborative study with ICICLE-PD 
study [13]. Ethical approval was obtained from the Newcastle 
and North Tyneside research ethics committee (REC 
reference: 09/H0906/82). All the experiments were conducted 
according to declaration of Helsinki. All PD subjects gave 
informed written consent before participating in the study. 

Participants were assessed longitudinally every 18 months 
after baseline assessment up to 72 months. For this study, lab-
based gait data collected with wearable sensors were included 
from the 36 month assessment onwards (at 36 (T1), 54 (T2) 
and 72 months (T3)). In this way, we included more severe PD 
subjects for the training, validation and testing of CNN, in 
order to provide a better generalization of our findings. 
Assessments were performed within one hour of dopaminergic 
medication intake. Participants clinical (e.g. MDS-UPDRS 
assessment) and demographic data were collected. For the gait 
assessment, subjects were asked to wear a tri-axial 
accelerometer (Axivity, AX3, dimensions: 23.0 × 32.5 × 7.6 
mm, range: ±8g, sampling frequency: 100 Hz) attached on the 

lower back (L5) [5]. Participants were instructed to walk at 
their comfortable pace continuously for two minutes on a 25 
m oval circuit. Only those who completed at least one minute 
of continuous walk were included in the analysis. 

B. Data Pre-Processing 

From the AX3 tri-axial (x (vertical), y (medio-lateral), and 
z (antero-posterior)) raw data, a combined signal magnitude 
vector was calculated from the three axis. In previous work, 
for motor fluctuation [14] and motor severity assessment [12], 
a 5-seconds (approximately 5-10 walking steps) non-
overlapping sliding window had been used for feature 
extraction. Therefore, continuous signal magnitude vector was 
segmented into non-overlapping windows of 5-seconds (500 
samples) that were inputted into the DL model. Training data 
comprised of 1748 signal magnitude windows (T1 data), while 
validation (T2 data) and test data (T3 data) of 1427 and 1179 
windows, respectively. 

C. Proposed Model Architecture 

Previous work showed promising results by using CNN 
based deep neural networks based on raw movement signals 
for PD gait analysis [15]. A similar strategy was adopted in 
this study where we propose a new architecture of CNN for 
prediction of UPDRS-III, where the first bloc of convolutional 
layers is followed by a fully connected layers bloc (Fig. 1). 
Convolutional layer included four 1D-convolutional layers 
where each two convolutional layers were followed by the 1D 
max-pooling layer. This 1D convolutional bloc extracted deep 
features from each 5-second window (500, 1) of signal 
magnitude. Within each layer, a piecewise linear activation 
function (rectified linear activation function (ReLU)) was 
utilized [16]. In the second bloc, the model deep-learned the 
relationship between the spatial features extracted from the 
first bloc and the output regression (MDS-UPDRS-III 
predicted score) using two fully connected layers. The output 
layer included one neuron with ReLU activation to predict the 
MDS-UPDRS-III. 

Separate experiments were designed to tune the model 
design and hyperparameters of the network. Hyperparameters 
considered for optimization were the filters/units in the 
convolution layer and fully connected layers; size of kernel in 
the convolutional layer; dropout rate; learning rate; batch size; 
and number of epochs. An adaptive learning rate optimization 
algorithm (Adam) was used to minimize the mean absolute 
error loss function [17]. Hyperparameters optimization was 
achieved by using the validation dataset which included 1427 
segmented sequences of signal magnitude. 

III. RESULTS AND DISCUSSION 

Demographic and clinical data are reported in Table 1. At 
T1, the average age of PD participants was 70 years, height, 
mass, and BMI across three time points was comparable. 
Medication intake increased over time; however, their average 
motor severity (MDS-UPDRS-III score) ranged between 37-
38 across the three time-points. Final testing of the optimized 
model was performed on the separate testing datasets, which 
included 1179 sequences of the segmented signal from 46 PD 
subjects. These 46 subjects’ signals (average disease duration 
6.5 years) were used to evaluate the performance of the model 
which was trained on 70 PD subjects (average disease duration 
3.5 years). This section is divided into two parts: the first part 

 
Fig. 1. Schematic diagram of the proposed CNN based model 

architecture 
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highlights the CNN model tuning results (A), and the second 
part (B) presents the UPDRS-III prediction results. 

A.  Model Parameters Optimization and Training 

For each first and second layer of the convolutional bloc, the 
filters/units selected were 8, and 16 respectively with grid 
search from [8,16,32,64,100,128,256]. The kernel size within 
these layers was 11, selected by grid search from [3,5,7,9,11]. 
The number of units selected by tuning for dense layers were 
100. Learning rate hyperparameter of 0.001 was grid searched 
from [0.00001,0.0001,0.001,0.01, 0.05,0.08,0.1]. Dropout rate  
of 0.5 was selected by searching from 
[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.0.8,0.9] for fully connected 
layers. Batch size of 8 was suitable based on the grid search 
from [8,16,32,64,128,256,512]. Epoch size selected was 50 by 
searching from 50 to 500 with increment of 50. However, early 
stopping of model training with patience of 10 was also 
applied in Keras framework to avoid overlearning of the 
model, when the model performance was not improving on the 
validation dataset. 

B. Testing of the Proposed Model 

The tuned trained model was used to predict the MDS-
UPDRS-III score (T3) for each sequence within subjects for 
time-point 3 (46 PD subjects) as shown in Fig. 2. The 

performance of the CNN model within subject fluctuated 
based on the 5-second signal magnitude, even though CNN 
was trained against one true value of MDS-UPDRS-III for 
each subject. Where true labelled MDS-UPDRS-III score (red 
color) was close to or within the range of upper and lower 
bound of one standard deviation (green color) from the 
average predicted MDS-UPDRS-III score (blue color). 
However, the average values of the predicted MDS-UPDRS-
III scores within each subject were compared with the actual 
scores for further analysis. 

Linear trend (correlation) between actual and predicted 
MDS-UPDRS-III is presented in Fig. 3. In terms of relative 
agreement, a strong correlation (r = 0.82, p < 0.001) between 
predicted and actual scores was observed. Absolute agreement 
was good (ICC (2,1) = 0.76, p < 0.001). When the model was 
tested on T3 data, the mean absolute error for the predicted 
scores was 6.29, which is clinically significant. The proposed 

Table 1. DEMOGRAPHIC CHARACTERISTICS OF THE PD 

SUBJECTS, (LEDD: LEVODPA EQUIVALENT DAILY DOSE) 

Demographics 
Time Point 1 

N = 70 PD 

Time Point 2 

N = 58 PD 

Time Point 3 

N = 46 

Disease Duration (y) 3.54 ± 0.45 4.98 ± 0.43 6.48 ± 0.48 

Sex (M/F) 46/24 38/20 32/14 

Age (years) 70.04 ± 9.78 68.58 ± 9.36 69.98 ± 9.37 

Height (m) 1.69 ± 0.09 1.69 ± 0.08 1.67 ± 0.09 

Mass (kg) 77.62 ± 15.95 77.10 ± 16.04 77.47 ± 14.48 

BMI (kg/m2) 27.21 ± 5.19 26.28 ± 5.87 27.51 ± 4.18 

MDS UPDRS-III 37.56 ± 12.13 36.52 ± 12.69 38.11 ± 13.38 

Hoehn &Yahr (HY) 

Stages 

HY-I: 1 
 HY-II: 62 

HY-III: 7    

HY-I: 1 
 HY-II: 50 

HY-III: 7    

HY-II: 34 
 HY-III: 11 

HY-IV: 1 

LEDD (mg/day) 487.8 ± 243.3 633.2 ± 270.4 730.8 ± 337.8 

 

 
Fig 2. Predicted and actual UPDRS-III score (Y axis) for each sequence of segmented window testing data (after 3 years) for each subject 

 

 
Fig. 3. Scatter plot showing the association between the predicted (Y 

axis) and actual UPDRS-III (X axis). 46 PDs are represented in green. 
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CNN-based model architecture, based on the use of raw 
signals, gave better performance compared to previous work 
based on feature engineering [10, 12]. 

Mean differences and limits of agreement between the 
predicted and actual UPDRS-III are presented in Fig. 4. A non-
statistically (p = 0.73) significant bias of -0.42 was observed. 
A negative bias means that CNN slightly underestimated the 
UPDRS-III scores compared to actual scores. This could be 
due to the fact that the model was trained on data from PD 
subjects with less severe motor impairments (MDS-UPDRS-
III: 37.56±12.13) compared to the patients in the testing 
dataset (UPDRS-III: 38.11±13.38). However, their difference 
is not clinically significant. Low constant bias (Fig. 4), strong 
correlation (Fig. 3), and good ICC (2,1) (Fig. 3) indicated that 
the model could reliably predict T3 UPDRS-III scores. 

IV. CONCLUSION 

The aim of this work was to propose a novel and objective 

DL-CNN model for quantifying PD motor severity (MDS-

UPDRS-III score), in order to support clinicians for better 

management of PD patients. PD gait assessed longitudinally, 

with wearable technology, over a period of three years, was 

used to train and test the CNN based deep neural network 

architecture in order to estimate PD motor severity. The 

trained model tested on prospective data (after 3 years) gave 

reliable robust predicted MDS-UPDRS-III scores. Wearable 

sensor based gait data paired with deep learning techniques 

showed promising results for its adoption to support PD 

clinical management. Further work is required to extend this 

approach to real-world gait data for continuous monitoring of 

PD motor severity and compare it with traditional feature 

engineering based machine learning approaches. 
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Fig. 4. Bland-Altman plot showing the absolute agreement and limits of 

agreement (dotted lines) between the predicted and actual UPDRS-III. 
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