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Abstract— This paper presents an inception-based deep
neural network for detecting lung diseases using respiratory
sound input. Recordings of respiratory sound collected from
patients are first transformed into spectrograms where both
spectral and temporal information are well represented, in
a process referred to as front-end feature extraction. These
spectrograms are then fed into the proposed network, in a
process referred to as back-end classification, for detecting
whether patients suffer from lung-related diseases. Our
experiments, conducted over the ICBHI benchmark meta-
dataset of respiratory sound, achieve competitive ICBHI scores
of 0.53/0.45 and 0.87/0.85 regarding respiratory anomaly and
disease detection, respectively.

Clinical relevance— Respiratory disease, wheeze, crackle,
inception, convolutional neural network.

I. INTRODUCTION
The World Health Organization has reported that one of

the most common mortality factors worldwide is respiratory
illness [1]. the most effective way to combat mortality from
respiratory diseases is through early detection, which not
only helps to limit the spread of infection but also improves
treatment effectiveness. During a lung auscultation, which
is an important aspect of a medical examination, experts
can hear and detect anomalous sounds such as Crackles or
Wheezes and thereby diagnose respiratory-relevant diseases.
Therefore, if these anomaly sounds can be automatically
detected by an edge device, it is very useful for self-
observation, or early detection of such diseases. Analysing
respiratory sound was mentioned in [2], [3], and recently
this research topic has attracted considerable attention, with
several machine learning methods having been proposed.
In particular, frame-based systems proposed in [4] and [5]
applied Mel-frequency cepstral coefficient (MFCC) extrac-
tion, a robust feature popularly used in Automatic Speech
Recognition (ASR), to derive feature vectors. These vectors
have been explored by conventional machine learning meth-
ods such as Hidden Markov Model [4], [5], Support Vector
Machine [6], or Decision Tree [7]. Meanwhile, approaches
relying on spectrogram representations involve generating
two-dimensional spectrograms (i.e. an image), which are then
fed into powerful network architectures such as CNN [8],
[9] or RNN [10], [11] for classification. Although recent
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publications that have applied machine learning techniques
report good performance, it is difficult to compare among
systems due to the different training/test data ratios used as
well as to the various experiments conducted over proprietary
datasets. To make our work comparable, we evaluate our
systems on the 2017 Internal Conference on Biomedical
Health Informatics (ICBHI) [12], which is one of the largest
public benchmark respiratory sound datasets. Furthermore,
we obey the ICBHI challenge setup by using the ratio of
60/40 for training/test sets defined by the challenge [13],
in which a subject is not presented in both training and
test sets (note that some systems randomly separate ICBHI
dataset into training and test subsets regardless of this patient
interdependency [8], [9], [10], [14]). Regarding our proposed
system, we firstly apply wavelet and gammatone transforma-
tions to generate a scalogram and a gammatonegram from
an audio signal, respectively. These spectrograms are then
fed into the proposed inception-based deep neural network
to detect respiratory anomalies and lung diseases.

II. ICBHI DATASET AND TASKS DEFINED

The ICBHI dataset [12], which was collected from a
total of 128 patients over 5.5 hours, comprises 920 audio
recordings with a wide range of sampling frequencies rang-
ing from 4 to 44.1 kHz and various lengths from 10 to 90
seconds (i.e. The challenge in [12] presents how the dataset
was collected as well as recording devices used). In each
recording, four different types of cycles (Crackle, Wheeze,
Both (Crackle & Wheeze), and Normal) are marked with
onset and offset times. Additionally, each recording is also
associated with the patient’s disease status, mainly classified
into three main categories: Chronic Disease (i.e. COPD,
Bronchiectasis and Asthma), Non-Chronic Disease (i.e. Up-
per and Lower respiratory tract infection, Pneumonia, and
Bronchiolitis), and Healthy. Given the ICBHI metadata, this
paper proposes two main tasks. First, Task 1 aims to classify
four different types of respiratory cycles mentioned. Second,
Task 2, referred to as respiratory disease prediction, is to
detect whether a patient suffers from Chronic Diseases, Non-
Chronic Diseases, or Healthy. Regarding then experimental
setting, we obey ICBHI challenge guidelines by splitting the
audio recordings into training/test sets with a ratio of 60/40
without recordings of the same subject presenting in both
training and test data (i.e. The challenge in [12] presents
how to split the dataset into training/test subsets with non-
overlapping patient subjects). While full audio recordings
are evaluated in Task 2, respiratory cycles with onset and
offset labels are extracted from all recordings for experiments
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conducted in Task 1. To evaluate performance and compare
with state-of-the-art systems, we use metrics of Sensitivity
(Sen.), Specificity (Spec.) and ICBHI scores (Average score
(AS) and Harmonic score (HS)) that were comprehensively
presented in [14], [15], [16].

III. PROPOSED BASELINE SYSTEM

A. The baseline system architecture

ICBHI scores

respiratory cycles/
entire recordings

labels audio
test/train data

>= 10-s segmentScalogram
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resample,Wavelet

split

duplicate
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Fig. 1. The baseline system architecture.

TABLE I
THE CNN BASELINE NETWORK ARCHITECTURE PROPOSED

CNN baseline layers Output
(W×H×C)

BN - Conv [3×3] @ 64 - ReLU - BN - MP [2×2] - Dr (10%) 62×78×64
BN - Conv [3×3] @ 128 - ReLU - BN - MP [2×2] - Dr (15%) 31×39×128
BN - Conv [3×3] @ 256 - ReLU - BN - MP [2×2] - Dr (20%) 16×20×256
BN - Conv [3×3] @ 512 - ReLU - BN - GMP - Dr (25%) 512
FC - ReLU - Dr (30%) 1024
FC - Softmax C

To evaluate the proposed system, we define a baseline
as shown in Fig. 1 for comparison. In particular, respira-
tory cycles in Task 1 is re-sampled to 4 kHz as frequency
bands of abnormal sounds (Crackle and Wheeze) located
around 60-2000 Hz [10]. For the full recordings in Task
2, we re-sample them to 16 kHz to compensate for different
recording sample rates. Re-sampled respiratory cycles or full
recordings showing different lengths are next duplicated to
ensure the same length of 10 seconds for respiratory cycles
in Task 1 and minimum of 10 seconds in Task 2, respectively.
Next, respiratory cycles go through a band-pass filter of 100-
2000 Hz to reduce noise (note that band-pass filtering is
not applied to the full recordings in Task 2). After that,
these respiratory sounds are transformed into a scalogram
by using continuous Wavelet transformation with Morse as
the Wavelet mother function. Each 10-second scalogram of
one respiratory cycle in Task 1 is thus scaled into an image
of 124×154 image. Although the same scale ratio is also
applied, the scalograms of full recordings in Task 2 show
various time resolutions as the original recordings’ lengths
are different (note that the frequency resolution of 124 is
identical for both tasks). Therefore, the long scalograms of
full recordings in Task 2 are separated into various non-
overlapped image patches of 124×154 that have the same
size as 10-second scalograms in Task 1. To enlarge Fisher’s
criterion (i.e. the ratio of the between-class distance to the
within-class variance in the feature space), we apply mixup
data augmentation [17], [18] over image patches of 124×154
to increase variation of the training data.

For back-end classification, we propose a CNN-based
network architecture shown in Table I, referred to as the
CNN baseline. In particular, the CNN baseline contains sub-
blocks which perform batch normalization (BN), convolution
(Conv[kernel size] @ kernel number), rectified linear units
(ReLU), max pooling (MP[kernel size]), global max pooling
(GMP), dropout (Dr (percentage drop)), fully connected
layers (FC), and Softmax configured as shown in the Table
I. While the first FC layer is followed by ReLU and Dr,
Softmax is used after the second FC layer to predict a
probability among the categories classified. C takes values
of 4 or 3 depending on the number of categories in Task 1
or Task 2, respectively.

B. Experimental setting for the baseline

As mixup data augmentation is used, labels are not repre-
sented in the one-hot encoding format. Therefore, we use
Kullback–Leibler divergence (KL) loss shown in Eq. (1)
below

LossKL(Θ) =

N∑
n=1

yn log

(
yn

ŷn

)
+
λ

2
||Θ||22, (1)

where Θ are trainable parameters, constant λ is initially set to
0.0001, N is batch size set to 100, yi and ŷi denote expected
and predicted results, respectively. We construct the proposed
baseline with TensorFlow and the training is carried out for
100 epochs using Adam [19] for optimization.

As Task 2 evaluates over complete recordings while the
proposed CNN baseline network works on one image patch
of 124×154, the result over an entire recording is obtained
by averaging the results over its patches. Let us consider
pm = (pm1 , p

m
2 , . . . , p

m
C ) as the probability obtained from

the mth out of M patches and let C be the number of cat-
egories classified. Then, the mean probability of a complete
recording instance is denoted as p̄ = (p̄1, p̄2, . . . , p̄C) where

p̄c =
1

M

M∑
m=1

pmc for 1 ≤ c ≤ C. (2)

The predicted label ŷ is then determined as

ŷ = argmax
c∈{1,2,...,C}

p̄c. (3)

IV. AN ANALYSIS OF INCEPTION-BASED NETWORK
ARCHITECTURE AND ENSEMBLE OF MULTIPLE

SPECTROGRAM INPUT

Compared to the defined baseline, we evaluate whether
the proposed inception-based network architecture and en-
semble of different spectrograms are useful to improve the
performance.

A. Inception-based deep neural network

Given the 10-second scalogram of a Wheeze cycle repre-
sented as an image with size of 124×154 as shown in Fig. 2
(note that the short-time Wheeze cycle is duplicated for three
times to obtain 10-s duration in Fig. 2), the Wheeze spectrum
is restricted within a narrow frequency band (i.e. the narrow
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Fig. 2. 10-second scalogram of Wheeze cycles
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Fig. 3. Inception layer architectures.

band, a specific property of Wheeze sound, indices from 25
to 40 of 124 central frequencies distributed from minimum
frequency of 100 Hz and maximum frequency of 2000 Hz)
and shows short time duration (note that Crackle cycles also
restricted to narrow frequency bands). This may cause inef-
fective if using a traditional CNN based network architecture
with a single kernel size (i.e. the fixed kernel size of [3×3] is
used popularly). To force the back-end classification model
to learn these minor variations of spatial features in these
narrow frequency bands, inception-based networks, which
perform well on image data [20], are applied in this paper. In
particular, we replace the convolutional layers (Conv) used in
the CNN baseline by a different inception layer architectures
as shown in Fig. 3. Notably, we use kernel [1 × 4] instead
of [5 × 5] as usual to enforce the network focus on minor
variation across the frequency dimension of the spectrum of
Wheeze and Crackle sounds.

B. Ensemble of multiple spectrogram input

Inspired by [15], which shows that ensemble models of
different spectrograms help to improve performance, we
evaluate the combination of two scalogram (two Scal. for
short) generated from two different Wavelet mother func-
tions: Morse and Amor. While parameters in Morse func-
tion are set to obtain high resolution of frequencies, Amor
function shows equal variance in time and frequency. We
also evaluate another combination of scalogram (using Morse
function) and gammatonegram (using gammatone filter [21]).
Regarding the gammatone (Gam.) spectrogram, we use the
setting of window size = 512, hop size = 256 and filter
number = 124 to generate the same patch size of 124×154
as the scalogram (Scal.) mentioned in the baseline system
in Section III. Meanwhile, the back-end classifier is reused

from the baseline system proposed. To ensemble two baseline
models, each of which learns from one type of input, we fuse
the probabilities as in Eq. (4)

p̄ =
1

K

K∑
k=1

pk (4)

where pk is the probability output obtained from spec-
trogram k and p̄ is the probability output averaged over
K spectrograms. Eventually, the final result is obtained by
applying likelihood maximization in Eq. (3)

V. EXPERIMENTS AND RESULTS

A. Effect of inception-based network architectures

TABLE II
EFFECT OF INCEPTION-BASED NETWORK ON RESPIRATORY ANOMALY

DETECTION - TASK 1

Task Systems Spec. Sen. AS/HS Scores
Task 1 Baseline 0.68 0.30 0.49/0.42
Task 1 Inception-01 0.73 0.30 0.52/0.43
Task 1 Inception-02 0.70 0.30 0.50/0.42
Task 1 Inception-03 0.69 0.33 0.51/0.44
Task 1 Inception-04 0.70 0.32 0.51/0.44

TABLE III
EFFECT OF INCEPTION-BASED NETWORK ON RESPIRATORY DISEASE

DETECTION - TASK 2

Task Systems Spec. Sen. AS/HS Scores
Task 2 Baseline 0.59 0.75 0.67/0.66
Task 2 Inception-01 0.88 0.81 0.85/0.84
Task 2 Inception-02 1.00 0.75 0.87/0.85
Task 2 Inception-03 0.53 0.83 0.68/0.64
Task 2 Inception-04 0.47 0.81 0.64/0.59

As shown in Tables II and III, the proposed inception-
based network outperforms the CNN baseline for both clas-
sification tasks. In Task 1, the inception-01 network achieves
the best scores of 0.52/0.43. Meanwhile, the best scores of
0.87/0.85 are obtained by the inception-02 architecture for
Task 2 of lung disease detection (Note that the inception-02
architecture can help to achieve the best Spec. score of 1.0).

B. Effect of multiple-spectrogram ensemble

TABLE IV
EFFECT OF MULTIPLE-SPECTROGRAM ENSEMBLE ON RESPIRATORY

ANOMALY DETECTION - TASK 1

Task Systems Spec. Sen. AS/HS Scores
Task 1 Baseline 0.68 0.30 0.49/0.42
Task 1 Two Scal. 0.73 0.29 0.51/0.41
Task 1 Gam. & Scal. 0.72 0.31 0.51/0.43

TABLE V
EFFECT OF MULTIPLE-SPECTROGRAM ENSEMBLE ON RESPIRATORY

DISEASE DETECTION - TASK 2

Task Systems Spec. Sen. AS/HS Scores
Task 2 Baseline 0.59 0.75 0.67/0.66
Task 2 Two Scal. 0.65 0.79 0.72/0.71
Task 2 Gam. & Scal. 0.65 0.76 0.70/0.70

Experimental results in Tables IV and V show that an
ensemble of multiple spectrograms helps to improve the
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TABLE VI
COMPARISON AGAINST STATE-OF-THE-ART SYSTEMS WITH ICBHI

CHALLENGE SPLITTING - TASK 1 (HIGHEST SCORES IN BOLD).

Task Method Spec. Sen. AS/HS Scores
Task 1 DT [22] 0.75 0.12 0.43/0.15
Task 1 HMM [23] 0.38 0.41 0.39/0.23
Task 1 SVM [24] 0.78 0.20 0.47/0.24
Task 1 BRN [25] 0.69 0.31 0.50/0.43
Task 1 CNN-RNN [15] 0.81 0.28 0.54/0.42
Task 1 Our system 0.73 0.32 0.53/0.45

TABLE VII
COMPARISON AGAINST STATE-OF-THE-ART SYSTEMS WITH ICBHI

CHALLENGE SPLITTING - TASK 2 (HIGHEST SCORES IN BOLD).

Task Method Spec. Sen. AS/HS Scores
Task 2 CRNN [26] - - 0.72/-
Task 2 CNN-MoE [16] 0.71 0.98 0.84/0.82
Task 2 Our system 0.88 0.85 0.86/0.86

performance compared to the baseline. While an ensemble
of scalogram and grammatonegram achieves the best scores
of 0.51/0.43 in Task 1, Task 2 shows the highest scores of
0.72/0.71 from an ensemble of two scalograms.

C. Performance Comparison to the state of the art

Given the results of inception-based networks and mul-
tiple spectrogram ensembles, we combine the inception-
01 network architecture and an ensemble of scalogram &
gammatonegram for further analysis and compare the ob-
tained results with the state-of-the-art systems (note that we
only compare with systems that follow the standard ICBHI
splitting of 60/40 with respect to subject independency [13]).

As shown by the comparison in Table VI, we achieve
scores of 0.53/0.45 in Task 1 that are very competitive with
the state-of-the-art systems. Task 2 results presented in Table
VII show that the ensemble system outperforms the state-of-
the-art systems, but is not better than the standalone system
using inception-02 (cf. Table III).

VI. CONCLUSION

This paper has presented an exploration of inception-based
deep learning models and an ensemble of multiple input
spectrograms for detecting respiratory anomaly and lung
diseases from auditory recordings. By conducting extensive
experiments on the ICBHI meta-dataset, we showed that our
best model, which uses inception-01 based architectures and
ensemble of gammatonegram & scalogram, outperforms the
state-of-the-art systems on both Task 1 and Task 2, thus
validating the efficacy of deep learning for early diagnosis
of respiratory diseases.
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