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Abstract— P300 speller is a brain-computer interface (BCI)
speller system, used for enabling human with different para-
lyzing disorders, such as amyotrophic lateral sclerosis (ALS),
to communicate with the outer world by processing electroen-
cephalography (EEG) signals. Different people have different
latency and amplitude of the P300 event-related potential (ERP)
component, which is used as the main feature for detecting the
target character. In order to achieve robust results for different
subjects using generic training (GT), the ensemble learning
classifiers are proposed based on linear discriminant analysis
(LDA), support vector machine (SVM), k-nearest neighbors
(kNN), and convolutional neural network (CNN). The proposed
models are trained using data from healthy subjects and tested
on both healthy subjects and ALS patients. The results show
that the fusion of LDA, kNN and SVM provides the most
accurate results, achieving the accuracy of 99% for healthy
subjects and about 85% for ALS patients.

I. INTRODUCTION

Brain-computer interface (BCI) is a closed-loop system
controlled by human brain signals. Most of BCI systems use
electroencephalography (EEG) for brain activity detection, as
it is relatively cheap, portable and non-invasive neuroimaging
method [1]. EEG-based BCI systems can use three different
paradigms, which are: event-related potential (ERP), steady-
state visual evoked potential (SSVEP) and motor imagery
(MI). ERP paradigm is classically used in speller systems,
such as P300 speller, introduced in 1988 [2].

ERP paradigm states that a positive deflection can be de-
tected at around 300 ms after the target stimuli. This positive
deflection is called P300 component [3]. This concept is
also known as the oddball paradigm [4]. The graphical user
interface of an ERP-based speller system usually looks like a
table of symbols, in which rows and columns of symbols are
flashing randomly, while the subject is staring at a particular
chosen character. The classical English-oriented graphical
user interface (GUI) of P300 speller is represented as a 6×6
matrix of symbols.

The main problem of the ERP-based speller systems is
that a P300 component is not necessarily detected at 300 ms
after the visual stimuli, as its latency varies from one human
to another, so it is a subject-dependent paradigm. Classical
P300 speller requires training phase for each user, which
takes a lot of time. The objective of this work is to design a
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robust, subject-independent classifier for P300 speller, which
will not only be accurate enough for any user, but also can
process data faster. For achieving this aim, the proposed
ensemble models are trained using generic training (GT)
approach [5].

Section II overviews the data preprocessing steps and
training approach, followed by the description of the chosen
classifiers and their further fusion in ensemble models. Sec-
tion III presents the results obtained for healthy subjects and
ALS patients. Finally, Section IV contains the conclusions.

II. METHODOLOGY

A. Data Preprocessing

The models are trained using data of eight healthy subjects
from Akimpech P300 dataset [6]. Testing data consists of
another five healthy subjects from the above mentioned
dataset and five subjects, suffering amyotrophic lateral scle-
rosis (ALS) from BCI Horizon 2020 ALS patients P300
dataset [7].

The EEG values vectors X are marked with y label. For
EEG vectors containing target P300 peak y = 1, while for
non-target flashings y = −1. In order to have the same
number of electrodes, two electrodes (C3, C4) were removed
from Akimpech data, resulting 8-channel (Fz, Cz, Pz, P3, P4,
P07, P08, Oz) data from both datasets.

EEG signal has been band-passed using 0.1-30 Hz fre-
quency range, as the frequencies higher than 30 Hz or γ-
band of EEG signal is not necessary to be considered in the
oddball paradigm.

To reduce the redundancy of the data, only the regions
starting from -100 ms before the flashing, ending with
the 700 ms after the flashing are considered. This slight
change can improve the running time for ensemble models,
which require more computational resources than standalone
classifiers. Moreover, the dataset was balanced by removing
redundant non-target EEG vectors. As a result, the dataset
comprised of 60% of the non-target class and 40% of the
target class data.

B. Generic Training

There are two different training approaches used for P300
speller, which are subject-specific training (SST) and generic
training (GT).

SST assumes training for each user separately and it is
used in most classical P300 speller systems. The training
dataset in this case is collected from a single subject. After
the training phase, the system can be tested using the same
human’s brain signals.
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GT approach merges the data from different subjects into
a single training dataset. The generically trained model can
further be used for new subjects without training again. GT
approach represented better results in the previous exper-
iments [5] and is used further for the proposed ensemble
voters training.

C. Classifiers

Linear-discriminant analysis (LDA) is one of the most
useful classifiers in BCI research, as it is computationally
efficient and provides robust results. Despite the fact that this
trivial algorithm was proposed in 1980-s [8], it is still one of
the most useful methods applied for classification of various
data, including multi-channel EEG time-series. For instance,
when using EEG and electrooculography (EOG) combined
together for detecting user’s response, LDA achieves more
than 97% of accuracy [9].

Support vector machine (SVM) classifier uses kernel
functions to transform the data from one dimension to
another and then constructs an optimal hyperplane to separate
data classes. The optimal hyperplane is found by solving
quadratic optimization problem. For solving this problem
usually derivative tests are applied, such as Karush-Kuhn-
Tucker (KKT) Conditions[10]. Classical Fisher LDA was
outperformed by SVM classifier in discriminating early
vascular dementia patients by EEG data [11].

In this paper, the SVM classifier uses hyperbolic tangent
(tanh) as a kernel function for ensemble classifier, computed
as

tanh(Xi) =
exp(Xi)− exp(−Xi)

exp(Xi) + exp(−Xi)
, (1)

where Xi denotes the EEG feature vector.
One of the most simple and efficient classifiers is k-

nearest neighbors classifier (kNN), which identifies the dis-
tance between the classified data point and its k neighbors.
The distance metric used for kNN classifier can be cosine
distance, Euclidean distance, Manhattan distance and etc.
By trying different hyperparameters, it turned out that the
best result for this case is provided by Manhattan distance,
computed as

d(Xj , Xi) =

m=M−1∑
m=0

|xjm − xim|, (2)

where the classified EEG vector of length M is compared to
its k neighbors. Here Xi denotes the ith neighbor’s vector
and xim denotes the mth data point of this vector. The best
number of k was evaluated using grid search (GS). The
classifier reached a promising result of F-measure = 98.6%
for k = 3.

CNN became quite popular in BCI research over the last
decade. The reason for that is its ability to process multi-
channel EEG data without some additional dimensionality
reduction preprocessing. CNN can provide accurate results
for P300 component identification. For example, CNN model
with residual block achieved 96.77% accuracy for one sub-
ject and 93.3% for another [12]. CNN is frequently used

Fig. 1: Architecture of the CNN used: features are extracted
using convolutional layer and pooling layers, followed by
linear layers

in ensemble models, combining several classifiers [13]. The
ensemble voting classifier comprised of two CNNs achieved
96.5% of accuracy, the same accuracy was obtained by
ensemble SVM [14].

The CNN architecture used for multi-channel EEG clas-
sification is presented in Fig. 1. For the activation function
of convolutional layers it was decided to use rectified linear
unit (ReLU) function, computed as

ReLU(Xi) = max(0, Xi). (3)

The output of the last layer is a vector of length of
two, representing the probability of the input EEG data
containing target P300 component P (Xi, y = 1) or non-
target component P (Xi, y = −1).

Multi-channel EEG signal is passed directly to CNN
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classifier, while it is required to average the signal over the
channels before passing it to LDA, SVM and kNN classifiers.

D. Ensemble Classifiers

Ensemble learning is a technique of combining several
models for achieving more stable results. Recently, ensemble
learning became a popular choice for brain signal’s features
classification. The popular choice is to ensemble several
CNN classifiers [14] or a number of SVM classifiers with
different hyperparameters [15].

Ensemble learning represent stable results for P300 com-
ponent classification, however it requires much more com-
putational time to be trained. That is why the proposed
methodology is designed for GT approach, when the model
is trained on a merged dataset from different subjects and
does not require training for a new user.

The classification results of the ensemble averaged voting
models are computed as

Pavg(X|y = 1) =

∑N
i=1 Pi(X|y = 1)

N
, (4)

where Pi(X|y = 1) is the ith classifier’s prediction of
EEG vector X containing target P300 component. N is the
number of classifiers in the ensemble voter.

It is assumed that weighted voting can be more efficient
than simple ensemble averaging. However it is not always
true, for instance, the weighted model based on CNN, SVM
and stepwise LDA did not improve the accuracy of the
classification [16].

In the proposed weighted voter W-LDA-SVM-kNN each
result of the inner classifiers is multiplied by the weight wi,
resulting

Pw(X|y = 1) =

∑N
i=1 wiPi(X|y = 1)∑N

i=1 wi

, (5)

where weights wi can be found using random search (RS). In
this work classical fixed step size RS [17] is used, however
some more optimized methods such as adaptive step size
RS [18] may also be applied.

III. RESULTS
A. Performance Evaluation

In order to evaluate the performance of each classifier,
the number of true positive (TP ), true negative (TN ),
false positive (FP ) and false negative (FN ) predictions are
calculated. The accuracy is computed as

Accuracy =
TP + TN

TP + TN + FP + FN
. (6)

However, as the dataset is not perfectly balanced, there
might be the case when the classifier identifies only non-
target EEG signals, but fails to classify the target class.
In order to check, whether the target class is correctly
recognized and the number of FN is low, recall is calculated
as

Recall =
TP

TP + FN
. (7)

Precision value indicates an EEG signal labelled as posi-
tive (target response) is positive indeed and is computed as

Precision =
TP

TP + FP
. (8)

The most efficient metric for unbalanced datasets is F-
measure, which is calculated as

F-measure =
2(Precision ∗ Recall)
Precision + Recall

. (9)

B. Testing on Healthy Subjects

The classification models are trained on the 8-channel data
of eight healthy subjects and further tested on five healthy
subjects. Two baseline classifiers are trained and tested on the
same data. The classical gradient boosting classifier [19] and
the extreme gradient boosting or XGBoost [20] are chosen
as baseline classifiers, as they provide high performance and
efficiency for P300 classification [21].

The weights of the W-LDA-SVM-kNN model were found
using RS. Searching for the weights took 40.89 s for the data
from eight subjects. The obtained weights are w1 = 0.16 for
LDA classifier’s output, w2 = 0.79 for SVM output and
w3 = 0.21 for kNN model. The running time elapsed is
3.86 s, excluding the weights search (see Table I).

It is seen that the proposed classifiers provide good results,
excepting for the model which uses CNN. LDA-SVM-kNN-
CNN ensemble voter turned out to be computationally inef-
fective due to the complex structure of the neural network.
The fastest model proposed is LDA-kNN fusion, which
takes only 0.71 s to train for eight subjects. This can be
explained by the fact that LDA is an efficient choice for
EEG classification with low computational complexity and
kNN is an instance based algorithm which just computes the
distance for only k = 3 neighbors. The weighted ensemble
model does not show any performance improvement com-
pared to simple averaged LDA-SVM-kNN model. However,
both models provide the best result of F-measure achieving
99.93%.

The proposed classifiers provide better results than the
baseline classifiers in terms of computational complexity.
This is explained by the fact that the gradient boosting nests
decision trees one after another to achieve the necessary
performance, requiring more time for computation.

C. Testing on ALS Patients

The Table II represents the simulation results obtained
while testing on five ALS patients data. The overall per-
formance has decreased compared to the results obtained
when using data of healthy subjects only. Still, the proposed
methods do not fail to work with ALS patients, which means
that the classifiers are subject-independent.

The baseline classifiers are performing better, reaching
more than 85% of F-measure. The weighted voter classi-
fier W-LDA-SVM-kNN outperforms gradient boosting and
achieves the best performance metrics among the proposed
classifiers in this case. Hence, it can be assumed that SVM
classifier, which has the most value in the weighted voter,
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TABLE I: Testing results using healthy subjects data

Model Accuracy (%) Recall(%) F-measure (%) Time elapsed(s)
Gradient Boosting 98.27 80.45 81.99 16.25

XGBoost 99.90 97.00 97.90 4.89

LDA-kNN 99.91 99.91 99.00 0.71
LDA-SVM-kNN 99.93 99.20 99.12 3.81

LDA-SVM-kNN-CNN 88.20 80.56 81.03 2687.55

W-LDA-SVM-kNN 99.93 99.20 99.12
general time: 3.86

weights evaluation: 40.89

TABLE II: Testing results using ALS patients data

Model Accuracy (%) Recall(%) F-measure (%)
Gradient Boosting 85.01 83.56 85.98

XGBoost 89.95 87.42 88.21

LDA-kNN 84.79 81.00 82.95
LDA-SVM-kNN 84.18 84.99 83.99

LDA-SVM-kNN-CNN 76.04 73.89 74.45
W-LDA-SVM-kNN 85.35 83.97 86.00

performs slightly better on ALS 8-channel data than LDA
and kNN. The simple ensemble averaging models LDA-
SVM-kNN and LDA-kNN achieve more than 84% of accu-
racy, which is a meaningful result, despite the fact that these
models are slightly outperformed by the boosting algorithms.

IV. CONCLUSIONS

The proposed ensemble voting models based on LDA,
SVM, kNN and CNN classifiers have been trained using
generic training in order to achieve maximum subject-
independency of the system. The LDA-kNN voter provided
the best computational complexity, which makes it the most
optimal option for large datasets. Weighted ensemble voter
with SVM classifier provided the best performance for ALS
patients data, achieving more than 85% of accuracy. There
is a trade-off between the accuracy and the computational
complexity. LDA-kNN voter is a better option for large
datasets, while W-LDA-SVM-kNN provides better results,
requiring much more time for training. Trained on the healthy
subjects, ensemble voters turned out to be efficient for detect-
ing P300 component from ALS patients data. For the further
experiments the data collected from different electrodes is
planned to be used to see if the number of channels can be
decreased without affecting the performance. Moreover, the
data from other types of neuropathy patients can be used in
the future to evaluate the subject-independency of the system.
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