
  

 

Abstract— Work-Related Musculoskeletal Disorders 

(WMSDs) transpire when injuries to the musculoskeletal system 

(e.g. muscles, ligaments, tendons, and nerves) occur due to high 

fatigue inducing work-related activities, where repetitive 

movements and muscle strain are prevalent. However, it is 

challenging to quantify the risk of injury due to the assortment 

of tasks that factory workers may perform. Nevertheless, 

wearable sensors are a viable outlet that can unobtrusively 

capture biometric data in order to calculate objective measures, 

such as fatigue, which increases the risk of developing WMSDs. 

This paper presents a novel wearable sensor-based ergonomic 

monitoring system (ErgoRelief), which has been designed to 

predict fatigue within the context of aviation factory work. An 

experiment has been undertaken whereby thirty participants 

completed a series of repetitive tasks whilst wearing our sensor 

system. Results of multiple linear regression models demonstrate 

a maximum Adjusted R2 Score of 0.9259. 

I. INTRODUCTION 

Work-Related Musculoskeletal Disorders (WMSDs) arise 
due to multiple factors, such as repetitive motion, excessive 
force, and awkward and/or sustained postures, which cause 
injuries or disfunctions affecting muscles, bones, and joints 
[1]. Aviation manufacturing workers are more susceptible to 
suffering WMSDs, compared to other industries, as the nature 
of the majority of tasks requires components to be handmade 
[2]. The occurrence of WMSDs cause great discomfort to 
individuals and are a significant economic burden, which cost 
the US approximately $215 billion dollars annually [1]. 

As WMSDs can be caused by an array of risk factors, these 
factors need to be accurately monitored for effective risk 
reduction and prevention. However, due to the diversity of 
activities and tasks that workers encounter, it is challenging to 
monitor all factors in parallel. Nevertheless, fatigue has been 
proven to be strongly related to the severity of symptoms, such 
as pain and depression, which contribute to WMSDs [3]. 
Currently, there is not a gold standard to quantify fatigue [4, 
5]. Existing fatigue measurement methods can be classified as 
subjective or objective [4]. Many self-report questionnaires for 
assessing fatigue have been developed, which rate both 
physical and mental fatigue [4]. However, a significant 
challenge is that there are considerable inconsistencies 
between how people feel and their understanding of their 
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feelings. Additionally, collecting questionnaires can be 
cumbersome and time-consuming. However, the revolution of 
the Internet of Things enables devices to continually monitor 
human activity, utilizing non-invasive wearable sensors, 
whilst sensors deployed in the working environment can 
collect contextual information, such as external force and 
noise. Such data can be amalgamated to monitor fatigue 
objectively by measuring biometric information, such as body 
postures, heart rate, and external force, and reported to 
employees to prevent WMSDs [5-7].  

The current state-of-the-art undertakes research to monitor 
ergonomic risks using either wearable or non-wearable sensors 
and provides workers with simple and straightforward 
feedback, such as joint angles and ergonomic scores only [7, 
8]. However, work is limited that utilizes data from both 
wearable and non-wearable sensors to perform ergonomic 
analysis, whilst also providing workers with constructive 
advice about their current body conditions, in order to improve 
their situational awareness. To address these issues, this paper 
presents the framework of a novel wearable sensor-based 
ergonomic monitoring system (ErgoRelief), which has been 
designed to measure body fatigue levels utilizing a number of 
wearable and non-wearable sensors to record body part 
motion, external force, and heart rate data. The framework 
posited supports workers in monitoring their body condition 
by providing adequate time-of-need instruction or advice.  

The paper is organized as follows. Section II illustrates the 
details of the proposed framework. Section III and IV 
discusses the methodology, results, and discussion. Finally, 
the conclusions and future work are depicted in Section V. 

II. THE ERGORELIEF FRAMEWORK 

The ErgoRelief framework has been designed to perform 
ergonomic monitoring utilizing a number of wearable and 
non-wearable sensors. This system is set within the context of 
aviation manufacturing and aims to measure fatigue levels 
during repetitive tasks, whilst providing feedback and data 
analytics. Fig. 1 illustrates a high-level overview of the system. 
Three components, including data collection, analysis, and 
visualization, two stakeholders (aviation manufacturing 
workers and factory operations) form the feedback loop. 
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Figure 1.  ErgoRelief System Framework 

The first aspect of the framework is raw data collection. 
Sensors in ErgoRelief included wearable, which are attached 
to the worker’s body, and non-wearable, which are deployed 
in the workplace. The sensors act as the data source to collect 
biometric data, including motion, external force exerted on the 
human body, and physiological data, including heart rate. The 
data is then subjected to data analysis, where it will be pre-
processed (e.g. data cleaning and filtering) and the worker’s 
current body fatigue level can be deduced using machine 
learning techniques. 

The data visualization aspect targets at providing 
interactive feedback to workers to support their activities, as 
well as insight to factory operations on workplace health and 
safety. Additionally, the utilization of smartphones allows bi-
directional communication to be enabled between workers, 
their teams, and factory operations. For instance, workers can 
be alerted through an alarm beep and vibration signal when 
they have maintained a high fatigue level for an extended 
period of time, whilst factory operations are able to provide 
professional and on-time safety advice to workers. Workers 
are also able to report any unexpected conditions to their lead, 
and/or operations and/or management. 

In summary, we propose a framework for ergonomic 
monitoring that engages a variety of stakeholders and is aimed 
at improving factory-wide situational awareness. In the 
framework, biometric data is collected, analyzed, and 
visualized to aviation manufacturing workers and operations 
utilizing a number of sensors that form a network focused 
around the worker. This framework postulates that by 
detecting and decreasing fatigue, workers’ safety and 
productivity can significantly improve. To demonstrate the 
feasibility of this framework, an initial experiment has been 
conducted to quantify the relationship between biometric data 
and fatigue levels. 

III. MATERIALS AND METHODS 

In order to demonstrate aspects of this framework, an 
experiment has been conducted that consists of four repetitive 
tasks that have been designed to simulate common tasks that 
aviation manufacturing workers may encounter. The platform 
consists of several wearable and external sensors that have 
been employed to measure biometric data, motion, and force. 
It should be noted that the visualization and feedback aspects 
of the framework are outside the scope of this paper. 

A. Participants 

Thirty participants (13 males, 17 females) have been 
included in the experiment, with an age range from 20 to 54 
(mean = 25.67, standard deviation = 6.66). Participants did not 
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have a history of cardiovascular illness or any physical injuries 
prior to the experiment. This experiment has been approved by 
the University of Queensland Ethics Sub-Committee. 

B. Experiment Design 

According to [9], the most common physical tasks that 
factory workers encounter are lifting, lowering, pushing, 
pulling, carrying or moving of a load. Additionally, complex 
aviation manufacturing and assembly tasks are designed based 
on these fundamental tasks, including assembling primary 
parts using hand tools and joining different structures [2]. 
Taking this into account, four repetitive tasks have been 
designed to simulate daily aviation factory work, including: 

1. Two-handed Trolley Pushing/Pulling: A trolley is 

positioned in front of the participant with the handle 

height at 80cm. Participants are required to push the 

trolley away at a distance of 5m and pull it back.  

2. Two-handed Box Carrying: Two chairs are positioned on 

each side of the participant, with the horizontal distance at 

approximately 60cm from the body center. A box is 

placed on the chair at the right-hand side of the 

participant. Participants are required to pick up the box 

and move it from one chair to another.  

3. Two-handed Box Pushing/Pulling: A table is positioned 

in front of the participant that is 90cm high with a box on 

top of it. Participants are required to push the box away to 

a distance of approximately 60cm and pull it back.  

4. Two-handed Box Lifting: Participants are required to lift 

up a box with two hands from the floor to hip height, hold 

for 3 seconds, and lower it down to the floor.  

Each task has been performed using a variety of weights 
that ranged from light to heavy, including: 

1. Two-handed Trolley Pushing/Pulling: 3kg, 40kg, 80kg.  

2. Two-handed Box Carrying: 3kg and 5kg.  

3. Two-handed Box Pushing/Pulling: 3kg, 10kg, 20kg. 

4. Two-handed Box Lifting: 3kg and 5kg.  

For each task and weight, participants were required to 
perform two 10-minute repetitions of the task. There was a 5-
minute resting period after each repetition. After each task, 
participants were also asked to completely rest and recover 
before commencing the next task. During each repetition, 
participants were allowed to control their posture and the 
speed while completing the task.  

The Two-handed Box Lifting and Two-handed Box 
Carrying tasks took approximately 1 hour each to complete, 
whilst the Pushing/Pulling tasks took approximately 1.5 hours 
each to complete. As an incentive, after completing the 
experiment, participants were each paid using a $50 gift card.  

C. Data Collection 

The wearable aspect of the system utilizes six 
Shimmer3TM1 Inertial Measurement Unit (IMU) sensors (see 
Fig. 2a) and a Shimmer3TM photoplethysmogram (PPG) 
optical pulse ear clip (see Fig. 2b). The IMU sensors were 
utilised to capture raw 3-axis acceleration and 3-axis angular 
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velocity, whilst the PPG sensor captured Blood Volume Pulse, 
which was used to derive heart rate. The Shimmer3TM sensors 
were configured at a sample rate of 100.21Hz and data was 
stored on the internal microSD card inside each sensor. Each 
IMU was fastened to six different body parts, including the 
hip, upper spine, left arm, right arm, right forearm, and right 
shank, whilst the PPG ear clip has been clipped to the left ear 
lobe and was connected to the Shimmer3TM sensor on the left 
arm (see Fig. 3). 

The non-wearable sensor aspect of the system contained a 
SparkfunTM2 Load Cell (see Fig. 4a) and a BertecTM3 Force 
Plate (see Fig. 4b). The Force Plate has been utilised to capture 
raw 3-axis Ground Reaction Force, 3-axis Torso Moment, 2-
axis Center of Pressure, and 2-axis Centre of Gravity. The 
Load Cell’s handle has been attached to the box during each 
task to measure the hand’s exertion force against the box. The 
load cell and force plate were configured at a sample rate of 
10Hz and 100Hz respectively, and data was logged directly to 
a PC through a wired connection. Both the Shimmer3TM 
sensors and Load Cell have been used throughout the entire 
experiment. The Force Plate has not been included in the Two-
handed Trolley Pushing/Pulling task, as this task requires 
participants to walk and move off the force plate. 

Additionally, at the beginning and end of each repetition 
and task, subjective ratings of fatigue have been captured via 
the Borg Scale Questionnaire [10]. This questionnaire required 
participants to rate their level of exertion on a scale from 6 to 
20, whereby 6 related to no exertion, whilst 20 represented 
very hard exertion. Participants were also required to be 
relaxed before starting each task.  

      

Figure 2.  a) Shimmer3TM GSR+ Unit and b) Shimmer3TM PPG-to-HR ear 

clip 

 

Figure 3.  Shimmer3TM Wearable Sensor Placement 
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Figure 4.  a) Load Cell – 200kg, S-Type (TAS501) b) Force Plate 
FP4060-NC 

D. Experimental Measures 

The data processing procedure that has been followed is 
depicted in Fig. 5. The collected data has been synchronized 
to a consistent timestamp, resampled to 100Hz to avoid 
inconsistent sampling rates between sensors, and filtered 
before analysis [11-13]. Acceleration, Force Plate, and Load 
Cell data have been filtered using a 2nd order zero-phase 
Butterworth low-pass filter, with a cutoff frequency of 3Hz 
[14, 15]. Angular Velocity data has been filtered using a 2nd 
order zero-phase Butterworth high-pass filter, with a cutoff 
frequency of 0.1Hz [16]. Furthermore, the PPG signal has been 
filtered using a 2nd order zero-phase Butterworth band-pass 
filter, with a cutoff frequency from 0.5Hz to 3.5Hz [17]. 

Both time and frequency domain features have then been 
extracted using a 30-second sliding window, with 50% 
overlapping area [18]. Time domain features included 10th, 
25th, 50th, 75th, and 90th percentiles, mean, standard deviation, 
inter-quartile range, kurtosis, mean absolute deviation, and 
autocorrelation. Frequency domain features included DC 
component, spectral energy, spectral entropy, peak frequency, 
and peak power. Features from all participants per task were 
combined into one datasheet. 

IV. RESULTS AND DISCUSSION 

The aim of the analysis is to demonstrate the relationship 
between fatigue and various types of predictors to determine 
the best predictor of fatigue using multiple linear regression 
(MLR) models. The MLR approach has been chosen as a 
method to determine the strength of the relationship between 
independent and dependent variables before further analysis. 

 

Figure 5.  Data Processing Procedure 

3  https://www.bertec.com/products/force-plates 
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This was undertaken on a per task basis and includes using 
three different data sets, which each act as the independent 
variables. This includes 1) biometric predictors only (extracted 
from the wearable sensors), 2) external predictors only 
(extracted from the force plate and load cell), and 3) a 
combination of both biometric and external predictors. Table I 
displays the number of predictors in each data set. It should be 
noted that the Force Plate was not utilized in the Two-handed 
Trolley Pushing/Pulling task, as participants were required to 
move off the plate. 

Subjective ratings of fatigue, which have been extracted 
from the Borg Scale Questionnaire, have been utilized as the 
dependent variable. As participants completed the 
questionnaire before and after each repetition, a change score 
has been calculated that represents their overall feeling of 
fatigue. This has been calculated by subtracting their initial 
self-reported level of fatigue away from their post rating (i.e. 
post-rating – pre-rating). As such, each repetition has a 
corresponding fatigue level. This is advantageous as it 
provides a variable rating between repetitions that occur within 
the same task. 

In MLR analysis, a small p-value indicates that there is a 
strong relationship between the dependent and independent 
variables. Therefore, backward elimination has been 
implemented to trim the independent variables with high p-
values in order to simplify the MLR model. This process 
iteratively removes the independent variable with the highest 
p-value, until the p-values for all independent variables are 
below a threshold, which is typically 0.05 [19]. Measurements 
of model performance have been evaluated using Adjusted R2 

Score and Root-Mean-Square Error (RMSE). The Adjusted R2 

Score is a relative measure that indicates the percentage of the 
variation of the dependent variable that can be explained by 
the independent variables and is adjusted depending on the 
number of predictors in the model. RMSE is an absolute 
measure that calculates the square root of the variance of the 
residuals to evaluate the models fit to the data.  

Fig. 6a and Fig. 6b illustrate the task specific MLR model 
performances based on the Adjusted R2 Scores and RMSE, 
respectively. The results demonstrate that the Adjusted 
R2Scores using only the external predictors performs relatively 
poorly in comparison to the other datasets for the task of 
predicating fatigue. The highest Adjusted R2 Score of 0.5853 
and lowest RMSE of 1.1861 were achieved during the Two-
Handed Box Pushing/Pulling task. As the Adjusted R2 Score 
results are lower than 0.6, this illustrates that the external 
sensors alone are not suitable for predicting fatigue. However, 
the addition of the biometric predictors significantly improves 
the results. 

TABLE I.  NUMBER OF PREDICTORS FOR EACH DATA SET 

Data Set Number of Predictors 

Biometric Data Set 1187 

External Data Set 
11 (Two-handed Trolley Pushing/Pulling) 

121 (Other 3 tasks) 

Biometric + External 
(Full) Data Set 

1198 (Two-handed Trolley Pushing/Pulling) 
1308 (Other 3 tasks) 

 

Figure 6.  MLR Model Performance Evaluation 

The highest Adjusted R2 score of 0.9179 was achieved 
from the Two-handed Box Carrying task, whilst the Two-
handed Box Pushing/Pulling task produced the lowest RMSE 
of 0.5603. This illustrates that biometric predictors are capable 
of suitably predicting fatigue. 

The combination of both biometric and external predictors 
marginally improves the results, with the full system achieving 
a maximum Adjusted R2 Score of 0.9259 from the Two-
handed Box Carrying task and lowest RMSE of 0.4972 from 
the Two-handed Box Pushing/Pulling task. The results 
illustrate that the addition of the biometric predictors to the 
external predictors (i.e. the full system) improves and does not 
hinder the model’s performance. 

In comparison to other systems, our setup has utilized both 
biometric and external predictors, which demonstrates an 
improved model for predicting fatigue. Although non-
wearable sensors have been included in other works, they are 
mostly used in conjunction with cameras in a laboratory 
environment [7]. A benefit of our study is that non-wearable 
(external) sensors have been used in conjunction with 
wearable biometric sensors to undertake a more 
comprehensive analysis, which has demonstrated improved 
results over using these sensors in isolation. We have also 
evaluated the performance between biometric and external 
sensors and have statistically demonstrated that the wearable 
biometric sensor system outperforms the non-wearable 
external sensors. This indicates that the wearable biometric 
sensors are greater predictors of fatigue.  

Moving forward, although the framework has been tested 
with a number of basic repetitive physical tasks, the workflow 
can be expanded to include more complex aviation-related 
tasks in the future, including fabrication, assembly and 
maintenance. This drives the future directions of the research 
in relation to reducing WMSDs, as by predicting the onset of 
fatigue enables systems to be developed that can alert 
stakeholders to this state so that they can take proactive steps 
to reducing and recovering from this state. Over time, safer 
work habits can be developed to reduce the onset of 
developing WMSDs. 
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V. CONCLUSIONS AND FUTURE WORK 

This paper posits a framework for a novel wearable sensor-
based ergonomic monitoring system (ErgoRelief). An 
experiment has been conducted to simulate basic repetitive 
aviation factory work and demonstrate the relationship 
between three different types of data, including biometric, 
external and a combination of both to predict fatigue. Results 
of the analysis illustrate that utilizing both types of data (i.e. 
biometric and external data) produces the optimum results. 
Future work aims to build on these results by constructing a 
machine learning model with a front-end user interface, which 
will be utilized to detect body fatigue levels and provide real-
time feedback to workers and any supporting operation group.  
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