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Abstract— Fast detection and classification of bacteria species
play a crucial role in modern clinical microbiology systems.
These processes are often performed manually by medical
biologists using different shapes and morphological character-
istics of bacteria species. However, it is clear that the manual
taxonomy of bacteria types from microscopy images takes time
and effort and is a great challenge for even experienced experts.
A new revolution has been inaugurating with the development
of machine learning methods to identify bacteria automatically
from digital electron microscopy. In this paper, we introduce
an automated model of bacteria shape classification based
on Depthwise Separable Convolution Neural Networks (DS-
CNNs). This architecture has excellent advantages with lower
computational costs and reliable recognition accuracy. The
experiment results indicate that after training with 1669 images,
the proposed architecture can reach 97% validation accuracy
and work well to classify three main shapes of bacteria.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have recently
made significant progress in several fields and reached re-
markable achievements, such as image processing [1], [2],
object detection [3], and semantic segmentation [4]. The high
recognition accuracy and good performance of CNNs even
better than humans in some cases have been promoting the
development of medical image analysis. Nowadays, bacterial
infections are the leading cause of mortal in both developed
and developing countries in all over the world, killing mil-
lions of lives each year. Therefore, it is absolutely essential to
apply the rapid diagnosis and classification of the infections
caused by bacteria to allow earlier preclusion and reduce
their impacts.

A. Related Works

The classification of bacteria is a significantly important
study for different medical purposes. In this context, it is
necessary to classify the kind of strain accurately; however,
in other contexts, we only need to distinguish between the
possible options of bacteria, such as color or shape. Many
recommendations are currently suggested to identify and
recognize bacteria from the medical images based on Neural
Networks (NNs).

The most fundamental technique applied for classifying
bacteria is based on the bacterium’s shape and cell arrange-
ment. Rod, coccus, and spiral are three common shapes
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of bacteria. Liu et al. [5] suggested the first work for
identifying the shape of bacteria named CMEIAS (Center
for Microbial Ecology Image Analysis System) with two
object classifiers to extract size and shape measurements of
segmented, digital images of microorganisms and classify
them into their appropriate morphotype. The experimen-
tal accuracy that CMEIAS shaped classifier reached, was
approximately 97% when performing on a dataset of 11
bacterial morphotype classes. The authors in the study [6]
utilized the shape detector to recognize bacterias. The image
processing consists of two stages, initially enhancing the
image and extracting only essential bacteria shapes, then
detecting rod shape and spherical (coccus) shape bacteria.
A model of bacteria shape recognition based on CNNs and
region variance was introduced by Polap et al. [7]. The
experiments of that study were performed on 63 images of
bacteria shapes, and the results after training could precisely
classify rod-shaped and spherical(coccus) one over 91% and
78%, respectively.

Different traditional machine learning methods and mod-
ern deep learning techniques have been widely used in
several works to recognize and identify bacteria types. In
[8], CNNs were used for counting bacterial species from
microscopy colony images with an overall accuracy of 92.8%
on a large training dataset. Lei Huang et al. [9] presented au-
tomated applications for bacterial colony classification tasks
using Deep CNNs on a dataset of 18 classes derived from
Peking University First Hospital. The authors announced that
the classification accuracy was from 73% to 90%. With the
same idea using transfer learning techniques [10], Wahid
et al. [11] employed Deep CNNs, called Xception archi-
tecture, to identify bacteria from microscopic images with
97.5% accuracy. At the same time, M.Talo [12] implemented
the pre-trained CNN architecture based on ResNet-50 to
classify digital bacteria images in the Digital Image of
Bacteria Species (DIBaS) dataset into 33 categories. That
work archived an average classification accuracy of 99.12%
higher than that of Wahid’s.

However, the traditional Deep CNNs request more compu-
tational complexity and memory-intensive when increasing
accuracy requirements and the large scale size of the archi-
tecture model, making it challenging to apply on portable
and limited hardware resource devices. The DS-CNNs can
exceedingly reduce model parameters and improve the com-
putational speed with negligible accuracy reduction, so it is
an appropriate option for low resources demand and low
power consumption. One of the first works on this research
was executed by Wang et al. [13] with the model of a
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large number of DS-Conv blocks to identify human tissue
types with the highest classification accuracy of 97% from
3D OCT images. In this article, we introduce a small-scale
architecture that utilizes Depthwise Separable Convolution
(DS-Conv) to classify the bacteria shape as an initial fast
bacteria recognition tool from microscopy images.

The remaining of this paper can be divided into parts as
follows: In section II, a brief DS-Conv operation and the pro-
posed architecture are introduced. Section III describes the
material and experimental setups. The results are provided
in Section IV, and we finally conclude this study in Section
V.

II. THE PROPOSED METHODS
In this section, we describe the methods that have been

used in our study. These are assembling of the fundamental
DS-Conv knowledge and proposed architecture. All these
subsections are shown below:

A. Depthwise Separable Convolution

The depthwise separable convolution [14] appeared the
first time on Laurent Sifre’s thesis and then was applied for
image classification. DS-Conv can be divided into depthwise
convolution for space filter operation and 1× 1 convolution
(also called pointwise convolution) for combining the input
channels linearly. Therefore, the redundant computation and
model size can be effectively decreased. Figure. 1 depicts the
mechanism operations of standard convolution and DS-Conv.
A ratio of the parameters between two convolution blocks is
constructed to demonstrate the reduction of computational
cost and model size.

As shown in Figure 1(a), in which the size of the input
image is Dk ×Dk ×M , where Dk is the height and width
of the input image, M is the number of input channels.
Each convolution layer uses filters of size Df × Df (one
channel per filter) with N filters. When N filters are taken
to slide through the input image, one intermediate feature
map is produced by convolving each input feature map with
a 2D filter kernel in depthwise convolution block, then during
point-wise convolution, the set of intermediate feature maps
are convolved with a 3D filter kernel to create final output
feature maps, Dg ×Dg ×N .

We assume that Pstandard is denoted the number of
parameters of the traditional convolution, can be calculated:

Pstandard = Df×Df×M×Dg×Dg×N = D2
f×M×D2

g×N
(1)

Following Figure 1(b), assuming Pdsc represents the quan-
tity of parameters in the depthwise separable convolution,
can be written as Eq. (2):

Pdsc = D2
f × 1×D2

g ×M + 12 ×M ×D2
g ×N (2)

Therefore, from Eq. (1) and (2), the ratio of parameters
between separable convolution and the conventional convo-
lution can be written as:

Pdsc

Pstandard
=
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N
+
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Fig. 1. Convolution mechanism in: (a) Traditional Convolution; (b)
Depthwise Separable Convolution.

Eq. (3) shows that the computation cost can be reduced to
1
N + 1

Df
2 compared to the conventional convolution process.

Our study utilizes Df × Df = 3 × 3 and N = 64, so the
computation complexity and the number of parameters of
corresponding convolution layers are 10 ∼ 13 times less
than that standard convolution at only a small accuracy loss.

B. Proposed Model Architecture

Our bacteria shape classification process will be described
in Fig. 2 from Input microscopy images block to Shape
classification one in which 2nd and 3rd stages are the
main contributions. In the data preprocessing step, the input
images are resized to fit with the model, augmented the
quantity of images for training, labeled with random weights,
then the datasets are divided into a training set and test
set with a ratio of 80/20, respectively. After the 2nd step,

Input 
microscopy 

images

Data 
Preprocessing

Depth-wise 
Separable CNNs

Shape 
Classification

Fig. 2. Suggested stages of shape classification, starting from initial
microscopy image to shape classification.

the input images with the size of 128 × 128 × 3 fetch to
Depthwise Separable CNNs for training, and the desired
outputs are a weight file and the probability of bacteria shape
(%). We employ the resize function’s scale feature and an
interpolation parameter to reduce the input image dimensions
from the originality to expected results.

The proposed architecture is intelligibly described in Fig.
3 with overall five layers, in which the first three convolution
layers extracting image features with a depth of 64 and filter
size 3 × 3. After that, one Fully Connected (FC) layer and
one Softmax function are employed for data flattening and
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Fig. 3. The proposed architecture of DS-CNNs.

bacteria shape classification. In addition, we also insert Batch
Normalization and Dropout layers to normalize data and
avoid over-fitting during training. Table I also defines the
model architecture based on some characteristics, including
Layers, Filter Shape, Parameters, and Multiply-Accumulate
(MACs). The total parameters and MACs are 0.27M and
13.2M, respectively.

TABLE I
THE PROPOSED ARCHITECTURE SPECIFICATION

Layer Type Filter Shape Parameters MACs

Conv1
Conv/stride 2 3 x 3 x 3 x 64 1792 7077888
Batch Norm - 256 0
Max Pooling Pool 2 x 2 0 0

DS-Conv2
DW-Conv 3 x 3 x 1 x 64 640 589824
PW-Conv 1 x 1 x 64 x 64 4194304

Max Pooling Pool 2 x 2 0 0

DS-Conv3
DW-Conv 3 x 3 x 1 x 64 640 147456
PW-Conv 1 x 1 x 64 x 64 1048576

Max Pooling Pool 2 x 2 0 0
FC4 Fully Connected 1024 66560 1332096

Classifier Softmax 3 19661 0
Total 266499 13.2M

III. MATERIAL & EXPERIMENTS SET UP

A. Datasets Description

In our experiments, the used datasets are derived from
DIBaS [15] which is publicly available and consists of 689
images divided into 33 bacterial species. Each bacteria type
has about 20 photos with a high resolution of 2048× 1532
pixels. Several bacteria-shaped images in our dataset are
shown in Figure 4. In order to process the data in accordance
with the training model, we deploy some computer vision
methods to resize and augment (flip, rotate, shift, zoom...)
image quantity to increase accuracy. As a result, the dataset
has 1669 images with dimensions of 128× 128× 3.

B. Experimental Setup

The model is trained and tested under the computa-
tional specification of 64-bit Windows 10, with Intel Core
i9 processor (3.6 GHz), 32GB Random Access Memory
(RAM), and NVIDIA GeForce RTX 2080 Graphic card.
The Python programming language based on Tensorflow
framework [16] and Keras libraries [17] are utilized. The
dataset after preprocessing has a result of 1669 bacteria shape
images, then 1335 images (80%) are allocated for the training
set and the remaining 334 ones (20%) for the test set. The
learning rate hyperparameter, which controls the speed of

SPIRAL
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ROD
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Actinomyces.israeli

Lactobacillus.paracasei
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Streptococcus.agalactiae

Neisseria.gonorrhoeae

Micrococcus.spp

Fig. 4. Sample microscopy images with coccus-shaped, rod-shaped and
spiral shaped of bacteria derived from DIBaS dataset.

weight update, is randomly set to 10−3, and we randomly
initialize the weight of filters and allow for updating weights
automatically.

IV. RESULTS

The proposed model is trained with several scenarios using
four popular optimizers used with 100 and 200 epochs.

TABLE II
TESTING ACCURACY (%) ON DIBAS DATASET FOR VARIOUS

OPTIMIZERS

Models Epochs Adam Adamax Nadam RMSprop
This work 100 94.01 91.43 94.31 94.61
This work 200 97.01 91.62 96.7 95.81

Table II shows the test accuracies (%) on our custom
datasets for various optimizers as well as the number of
epochs for training. As the results of the description table, the
accuracies of all the optimizers are more than 91%. RMSprop
optimizers training with 100 epochs and Adam optimizers
with 200 epochs attained the highest accuracy of 94.61%
and 97.01%, respectively.

TABLE III
COMPARE WITH SEVERAL COMMON CNNS ARCHITECTURES

Model Layers Parameters
(M)

MACs
(M)

Memory
(MB)

Accuracy
(%)

AlexNet 8 37.36 441 7.60 91.72
VGG - 16 16 65.07 5130 19.92 94.6
ResNet-50 50 23.69 1125 11.47 99.4
MobileNet 28 6.02 185 6.79 90.62
This study 5 0.27 13.2 1.93 97.01

Table III presents the model parameters, MACs, and
memory usage of various popular CNN models when training
on our custom dataset. It is clear that with the lower resources
we use, the classification accuracy is higher than that of
numerous complex and multilayer models. The number of
parameters (0.27M) is far smaller than the conventional
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TABLE IV
TEST RESULTS OF THE PROPOSED ARCHITECTURE

Coccus Rod Spiral
No. Test Images 112 116 106

Incorrect 4 4 3
Sensitivity (%) 96.43 96.55 97.17

CNNs such as AlexNet (37.36M), ResNet-50 (23.69M), or
even the compact ones like MobileNet v1 (6.02M).

The testing results of 334 images for three bacteria shapes:
coccus, rod, and spiral are described in Table IV.

Fig. 5 and Fig. 6 depict the validation accuracy of the
proposed model on the custom dataset derived from DIBaS
when training model with 100 and 200 epochs to verify the
data on Table II.

Fig. 5. Validation accuracy using Adam optimizer.

Fig. 6. Validation accuracy using RMSprop optimizer.

V. CONCLUSIONS

In this paper, a lightweight model for bacteria shape
classification was constructed and discussed. The proposed
method works well to classify three main shapes of bacte-
ria, including rod, coccus, and spiral, with a classification
accuracy of 97% and using lower parameters than other

traditional CNNs. This rapid classification is vital for the
following stages to distinguish bacteria between different
strains from microscopy images automatically. This method
is enormously beneficial to all institutions working in mi-
crobiology, where results of medical experiments will be
executed automatically and rapidly.
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