
  

  

Abstract—The Detrended Fluctuation Analysis (DFA) is a 

popular method for quantifying the self-similarity of the heart 

rate that may reveal complexity aspects in cardiovascular 

regulation. However, the self-similarity coefficients provided by 

DFA may be affected by an overestimation error associated 

with the shortest scales. Recently, the DFA has been extended 

to calculate the multifractal-multiscale self-similarity and some 

evidence suggests that overestimation errors may affect 

different multifractal orders. If this is the case, the error might 

alter substantially the multifractal-multiscale representation of 

the cardiovascular self-similarity. The aim of this work is 1) to 

describe how this error depends on the multifractal orders and 

scales and 2) to propose a way to mitigate this error applicable 

to real cardiovascular series. 

 
Clinical Relevance— The proposed correction method may 

extend the multifractal analysis at the shortest scales, thus 

allowing to better assess complexity alterations in the cardiac 

autonomic regulation and to increase the clinical value of DFA. 

I. INTRODUCTION 

The interest in the fractal analysis of the heart rate has 
been progressively growing aimed at describing the complex 
cardiovascular regulation, its adaptations to external stimuli 
and behavioral conditions, and its interactions with the 
autonomic control and the respiratory system. In this context, 
the Detrended Fluctuation Analysis (DFA) is a powerful tool 
for quantifying the fractal structure of cardiovascular series 

[1] based on the estimation of a coefficient, α, related to the 
Hurst's exponent. The DFA calculates the 2nd order moment 
of the fluctuations of the integrated series after polynomial 
detrending on consecutive blocks of n beats, F(n). For fractal 

series, α is estimated as the slope of log F(n) vs. log n [2].  

Since the heart rate shows a multiscale behavior, it has 

been proposed to estimate α as a function of n, α(n), by 
calculating "local" slopes around n [3], [4]. However, the 
DFA may overestimate the local slopes at the shorter scales, 
likely because of the overfitting of the detrending polynomial 
(the overestimation increases with the polynomial order) [5]. 

A proposed correction method assumes the same α at all the 
scales [5] and thus cannot be applied on real cardiovascular 
series because of their multiscale nature. Alternatively, it was 
suggested to use high-order polynomials at the larger scales, 
where the overfitting is negligible, and the 1st order 
polynomial, which causes the lowest overfitting, at the 
shortest scales [6]. However, also the 1st order detrending 
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polynomial may cause overestimations that limit the shortest 
analyzable n.  

Recently, the multiscale DFA was modified to evaluate 
the multifractality [7] calculating the qth moment order of the 
residual variances, Fq(n), and the multifractal multiscale self-

similarity coefficients, α(q,n), as the local slopes of log Fq(n) 
vs. log n. It is possible that the estimation bias affecting the 

monofractal α also influences α(q,n) at q≠2, but whether the 
error depends on both q and n and if it alters the 
quantification of multifractality has never been described 
systematically. Therefore, this work aims to describe the 
estimation bias in the multifractal multiscale DFA and to 
propose a method applicable to real cardiovascular series for 
mitigating this error. 

II. DFA ESTIMATION BIAS 

A. The Multifractal Multiscale DFA  

The DFA evaluates the multifractality of a time series Si 

of N samples (i=1,...,N), with mean µ and standard deviation 

σ, by calculating the summation yi 

 �� = ∑ ���µ
σ

��	
        (1),  

by splitting the yi series into M blocks of n samples, and by 

evaluating the variability function Fq(n) 
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with σ2
n(k) the variance of the residuals of yi in each block k 

after polynomial detrending [8]. In our work, n increased 
linearly on a log scale from 6 up to N/4 samples. Moreover, 
we considered integer q between -5 and +5; maximally 

overlapped blocks, which means that M=N−n+1; and linear 

detrending. The local slopes α(q,n) were calculated as the 
derivative of log Fq(n) vs. log n [6]. 

The cumulative functions of the α(q,n) squared 
increments were calculated separately for positive q 

 α/01 ��� = ∑ 23�", �� − 3�" − 1, ��7�8
	
        (3) 

and negative q 

 α/0� ��� = ∑ 23�", �� − 3�" − 1, ��7�9
	�81
    (4). 

The α/01 ��) and	α/0� ��� functions represent scale-by-scale 

measures of the degree of multifractality [9].  
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B. Synthetic Signals 

To quantify the estimation errors, we synthesized time 
series from 3 monofractal-monoscale processes with a known 

self-similarity coefficient: white Gaussian noise (α=0.5), pink 

noise (α=1.0), and Brown noise (α=1.5). For each process, 
we synthesized 10 series of 214 samples in Matlab R2020a. 
The white noise was generated by the randn function; the 
Brown noise by the cumsum function applied to the white 
noise; the pink noise by the pinknoise function [10]. 

Figure 1 shows the average of the 10 Fq(n) functions and 

10 derived α(q,n) coefficients for each noise. 
Underestimations of Fq(n) at the smaller n, particularly for 

q<0, produce α(q,n) overestimations at the shorter scales. 
The overestimation is more pronounced for q<0 and thus it 
wrongly suggests multifractality at the shortest scales. 

Actually, the α/0�  index (figure 2, upper panels) indicates a 
pronounced multifractal component at the shorter scales for 
the negative moment orders. 

III. BIAS REDUCTION BY REMOVAL OF OVERFITTED BLOCKS 

An explanation for the false multifractality at the shortest 
scales highlighted by figures 1 and 2 is the presence of blocks 
overfitted by the detrending polynomial. It is possible that the 
samples yi in one or some of the M blocks of eq.2 align 
almost perfectly over a straight line just for chance, causing 

σ2
n values close to 0, an event more likely for small n. The 

effect of these overfitted blocks is to underestimate Fq(n) and 
since q<0 amplifies the smaller components, the effect is 
greater for negative than positive q. Therefore, the presence 
of overfitted blocks would explain the Fq(n) underestimation 
at the smaller n with deviations from the straight line more 
pronounced for q<0. For this reason, our approach is to 

improve the Fq(n) estimates by removing too low σ2
n values.  

To remove the overfitted blocks we were inspired by a 
procedure previously proposed to deal with the quantization 
errors of the recording device. For this scope, it was 
suggested to ignore residual variances lower than a given 
threshold EPS defined by the instrument precision [11]. 
Similarly, we suggest running the sums in eq. (2) only on the 

blocks with σ2
n greater than a threshold EPS. The critical 

point in our application is to find the correct EPS value. Since 
the errors we want to minimize affect more the shortest scales 
and the negative q, we applied an iterative procedure based 
on the Golden Section search method to find the EPS value 

that minimizes α/0� ��� at the shortest scale, i.e. n=8. We also 

impose that α(q,8)≥α(0,8) for q<0, because we expect that 
the overestimation error is greater for q<0 than q=0. 

Figure 3 shows the effects of the removal of the outliers 
on the same series of figure 1. The method automatically 
adapts the EPS threshold according to the self-similar 
characteristics of the random process and appears able to 

remove almost completely the α(q,n) overestimation at the 
shortest scales without affecting the estimates at larger scales. 
The lower panels of Figure 2 indicate clearly the positive 
effect of the removal showing that the artefactual 
multifractality affecting the shorter scales is largely reduced. 

  

 

Figure 1. Upper panels: DFA variability functions Fq(n) for white, 

pink, and brown noise; lower panels: corresponding multifractal 

multiscale coefficients α(q,n). Average over 10 realizations for q >0 

in blue, q<0 in red, q=0 in black. 

 
Figure 2. Multifractality indices without (upper panels) and with 

(lower panels) removal of overfitted blocks by the EPS threshold: 

average over 10 realizations of white, pink and brown noise.  

 

 

Figure 3. Variability functions Fq(n) and the derived α(q,n) 

coefficients for the noises of figure 1 after the proposed correction; 

EPS is the identified threshold for removing overfitted blocks. 
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IV. APPLICATION ON REAL HEART RATE SERIES 

While a previously proposed method for correcting the 

DFA overestimation of the monofractal-monoscale α at the 
shortest scales cannot be applied to real multiscale heart rate 
recordings [5], our procedure does not require monoscale 
fractal series and thus can be also applied on self-similarity 
coefficients that change with n, as those of the heart rate. 
However, our EPS threshold optimization is done under the 
hypothesis of monofractality, which may not hold for real 
cardiovascular signals. Thus, a further step is required to 
apply our correction method to real signals. The step consists 
of the EPS identification not on the original series but on the 
surrogate ones obtained after Fourier phase shuffling [12], 
which preserves the 2nd order statistics removing the 
multifractal components.  

Figure 4 illustrates our method on real heart rate series. 
The example considers the same subperiods of 4-hour 
duration from a 24-hour recording of R-R intervals in a 

healthy volunteer used in a previous study: readers can find 
details on the data collection in [6]. The Ethical Review 
Board of Istituto Auxologico Italiano, IRCCS (Milan, Italy) 
approved these experimental procedures involving human 
subjects. The first subperiod was extracted during daytime 
activities (Wake), the second one during nighttime rest 

(Sleep). The panels a) and b) show the α(q,n) coefficients in 
these subperiods. Then we generated 100 phase-shuffled 
surrogate series with the code provided in [13] and calculated 
their multifractal-multiscale coefficients: panels c) and d) 

show the average α(q,n) over the 100 surrogates. The 

comparison between α(q,n) of the original and surrogate 
series points out the clear presence of multifractality at night, 
in particular at scales n>256 beats. By contrast, it is difficult 
to derive any conclusion at the shorter scales. During Wake, 
the original coefficients are extremely dispersed for q<0 but 
this seems due to the instability of the estimate rather than to 
multifractality. During Sleep, the original and surrogate 
coefficients show a similar dispersion, a result that might 

 

Figure 4. Multiscale multifractal DFA coefficients, α(q,n),  of  R-R intervals recorded in a volunteer during 4 hours of daytime wake (left) and 

nighttime sleep (right) vs. the scale n, in number of heartbeats, separately for moment orders q between -5 and +5. From top to bottom: α(q,n) of 

original (panels a and b) and phase-shuffled surrogate series (panels c and d); α(q,n) of the surrogate series after identification of the EPS threshold 

and overfitted blocks removal (panels e and f); α(q,n) of the original series after removal of the overfitted blocks by the EPS thresholds identified 

from the surrogate data (panels g and h). For each segment of the original data, we generated 100 phase-shuffled surrogate series and show the 

average α(q,n) of the 100 estimates, with q>0 in blue, q=0 in black, q<0 in red color. 
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suggest the absence of multifractality at the sorter scales; 

however, the α(q,n) coefficients of both the original and 
surrogate series show a pattern that is compatible with the 
reported overestimation error, more pronounced for q<0, 
resulting from the detrending overfitting, and that might hide 
a multifractal dynamics at the shorter scales present in the 
original series.  

We removed the overfitted blocks identifying the EPS 
threshold on the surrogate series: the panels e) and f) show 

their corrected α(q,n) coefficients. Finally, we used these 
EPS thresholds to remove too low residual variances when 

estimating the α(q,n) coefficients of the original series: see 
the results in panels g) and h). In this way, the comparison 
between the original and surrogate series after the removal of 
the overfitted blocks provides a clearer picture of the 
multifractal components at the shorter scales. In Wake, the 
critical instability of the estimates disappears and the 

coefficients converge at around α=1.5, with a similar 
dispersion among moment orders for the original and 
surrogate data. This suggests that during daytime multifractal 
components, if present, are negligible at the shorter scales. In 
Sleep, the removal of overfitted blocks eliminated the 
overestimation affecting the self-similarity coefficients with 
negative q. After the correction, the dispersion of the 
coefficients at scales between 8 and 16 beats seems 
substantially larger for the original than the surrogate series, 
which is a potential marker of multifractality during 
nighttime also at the shorter scales. 

V. CONCLUSION 

Analyzing synthesized series with known fractal 
properties we showed that the recently proposed 
multifractal-multiscale DFA can be affected by an 
estimation error and that this error might wrongly suggest 
the presence of multifractality at the shortest scales or hide a 
true multifractal component. Hypothesizing that the error is 
due to the overfitting of the detrending polynomials, we 
proposed a correction method based on the empirical 
identification of overfitted blocks for monofractal processes. 
The advantages of our method are that 1) it does not require 
that the recorded series is characterized by a monoscale self-
similarity, and 2) the threshold for the outlier removal can be 
identified on the phase-shuffled surrogate series if the 
recorded series is multifractal. These properties make the 
proposed method versatile enough to be applied to real 
cardiovascular recordings. Removing overestimation errors 
from the surrogate series, the comparison between original 

and surrogate α(q,n) allows detecting true multifractal 
components also at the shorter scales. 

Therefore, the proposed correction method may allow 

extending the multifractal-multiscale analysis at the shorter 

scales where strong interactions among the respiratory and 

the cardiovascular systems, as well as the influence of the 

sympathovagal autonomic regulation, are expected. This 

potentially improves the value of the DFA method in clinical 

settings and physiological studies. 
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