
Preserving Multiple Homophilies in a Network Configuration Model

Derek Lopez, Bhuvaneshwar Mohan, Lyric Boone, and John Matta

Abstract— Respondent-driven sampling (RDS) is a popular
method for surveying hidden populations based on friendships
and existing social network connections. In such a survey the
underlying hidden network remains largely unknown. However,
it is useful to estimate its size as well as the relative proportions
of surveyed features. The fact that linked network participants
are likely to share common features is called homophily, and is
an important property in understanding the topology of social
networks. In this paper we present a methodology that scales
up RDS data to model the underlying hidden population in
a way that preserves multiple homophilies among different
features. We test our model using 46 features of the popu-
lation sampled by the SATHCAP RDS survey. Our network
generation methodology successfully preserves the homophilic
associations in a randomly generated Barabasi-Albert network.
Having created a realistic model of the expanded SATHCAP
network, we test our model by simulating RDS surveys over
it, and comparing the resulting sub-networks with SATHCAP.
In our generated network, we preserve 85% of homophilies to
under 2% error. In our simulated RDS surveys we preserve
85% of homophilies to under 15% error.

I. INTRODUCTION

Hidden populations such as drug users or people infected
with HIV are difficult to detect via traditional statistical
sampling methods, both because their absolute numbers are
small, and also because of the stigma associated with identi-
fying as a member of these groups. Public health authorities
need to know the size and composition of these hidden
populations to plan and execute interventions to protect them
and those who interact with them. One way of obtaining data
is through respondent-driven sampling (RDS) [1]. RDS has
been used to capture data on a variety of targeted hidden
populations, including groups of MDMA users [2], jazz
musicians [3], and migrant populations [4].

RDS utilizes a phenomenon known as homophily. Ho-
mophily is the idea that individuals with similar behaviors in
similar populations will regularly interact with one another.
An RDS survey begins by recruiting seed nodes [5], which
are individual members of the target population. These seed
nodes are then asked to recruit more people from the target
population, often by handing out survey coupons to friends
or acquaintances.

An RDS survey represents only a fraction of a hidden pop-
ulation, and it is often desirable to know the population’s true
size. Scale up methods can be used to estimate a population’s
size based on a sample, providing a more accurate estimate
when looking at the social anomalies within a network.
There are different methods for scaling up networks, such as
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the service multiplier method [6] or the NSUM generalized
scale-up estimator [7]. These methods yield size estimates
for hard-to-reach populations, and often these estimates can
guide researchers and medical experts in prevention and
treatment efforts.

RDS is incompatible with scale-up methods that rely on
random samples, which an RDS survey does not produce.
However, one method that has shown positive results with
RDS data is successive-sampling population size estimation
(SS-PSE) [8]. SS-PSE relies on changing trends across
successive waves of recruitment to estimate the fraction of
the total population that was captured by the RDS survey.
SS-PSE can be used to estimate the total size of the network
without the need for outside studies or other data. [9].

In this paper we demonstrate a Monte-Carlo algorithm that
preserves homophilies in a scaled-up version of an RDS
network, using the estimation of the size of the hidden
population to create a model that lets us evaluate the relative
importance and distribution of the homophilic features. The
algorithm successfully deals with both extremely rare and
common features, such as those occurring in almost all
or almost none of the population, and is able to handle
large and complex sets of homophilies between nodes with
many simultaneous features, occurring at frequencies that are
present in real-world data.

It is difficult to know how well an RDS survey reflects
the homophilies of the underlying network. We test this
empirically by simulating an RDS survey over our generated
scaled-up network. We show that our algorithm preserves
multiple homophilies well. We also show that while individ-
ual RDS samples add considerable noise the the homophily
measurements, the mean homophily over many RDS samples
still reflects the homophily of the underlying network.

The data used in this paper are from SATHCAP [10],
an RDS survey which was conducted from 2006 to 2008,
primarily involving men who have sex with men (MSM),
drug users (DU) and injected drug users (IDU). Participants
were asked almost 1500 questions (referred to as features)
concerning their sexual habits, drug-related habits, and de-
mographic and other information. Participants were then
given recruitment coupons and instructed to give them to
individuals with whom they had participated in potential
HIV-spreading behavior, such as sex or needle-sharing. The
study was conducted in four cities, but in our analysis we
focus on the Chicago component of the data.

The data have been obtained through the National Ad-
diction and HIV Data Archive Program (NAHDAP), ac-
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cessible online1. This research was conducted under the
approval of the Southern Illinois University Edwardsville
IRB. Code used in this paper is publicly available at
https://github.com/derek200pz/homophily-config-graph.

II. RELATED WORK

Homophily is an important and often defining property
of social networks [11], [12]. Preserving social tendencies
like homophilies within a network is crucial because these
hidden populations can contain important information such
as disease reservoirs, which are groups with similar traits be-
ing affected by a disease [13]. Observing data about disease
reservoirs can aid in identifying communities with higher
risk of developing those specific diseases [14]. Additionally,
studying homophilies can help us further interpret how these
diseases are spread.

RDS was introduced as a way to create samples of hidden
populations that are externally valid, i.e. reasonably repre-
sentative of the entire hidden population. RDS was proposed
as a solution to known biases in other sampling methods
that target hidden populations [15]. Prior to Heckathorn’s
proposal of RDS, snowball sampling was widely used for
similar purposes. While similar in methodology to RDS,
snowball sampling does not produce a probability sample,
meaning it has little value for estimating statistics about the
population as a whole [16], [17]. RDS is also useful for
its ability to capture a portion of the population’s network
structure [18], [19], which is a property that is explored
in this paper, though there is evidence that this captured
network structure does not represent the structure of the
population well [20].

III. METHODS

A. Cleaning and Curation of Dataset

The process of cleaning, normalizing, and converting the
RDS data for use with this study is discussed fully in [21],
as is the process of generating a network representation of
the data. The SATHCAP dataset includes data from three
different collection sites, with no cross-connections between
sites. For this work, we only use the data collected in
Chicago, consisting of 2739 participants. Based on coupon
numbers included with the data, it is possible to reconstruct
the recruitment network, which consists of 132 components
(resulting from 132 seed nodes), and has a largest connected
component of 949 nodes. The survey consisted of 1488
questions (also referred to as features). We narrowed the
data by limiting it to features missing fewer than 5% of
responses. The focus was narrowed further to features that
provide societal, behavioral and economic details which
would affect a recruiter’s choice of partners and recruits.
This resulted in 46 features, which are listed in Table I.
These features are expected to display high homophily. Note
that a feature can have a low prevalence, but still display
high homophily. Information contained in the features of
interest include gender, sexual orientation, sexual behavior,

1https://www.icpsr.umich.edu/icpsrweb/NAHDAP/index.jsp

education, income, living situation, drug use, and acquisition
of infections such as HIV, gonorrhea, syphilis and chlamydia.

B. Determination of Population Size and Homophily

The goal of this paper is to use an RDS sample to
extrapolate a larger network with a similar distribution of
features and homophilies. To determine the size of the
underlying population, we used the RDS Analyst software
and its included SS-PSE package [22].

SS-PSE [9] uses a Bayesian inference method to estimate
the total size of the population based on an RDS sample.
It utilizes the distribution of the reported network sizes for
respondents in the sample combined with information about
how late in the recruitment chain each respondent appears.
In successive waves of recruitment, hub nodes with many
connections will tend to be recruited less frequently in the
later waves because they have already been recruited in
an earlier wave. Based on how quickly the network sizes
dwindle as successive samples are taken to construct the
RDS sample, it is possible to estimate what proportion of
the total population has been included in the current sample,
and by extension, the total size of the population.

For the SATHCAP sample, this method gave an estimate
with a 90% confidence interval of [11,290 23,118], a median
of 15,491 and a mean of 16,175. Based on these estimates,
for the networks generated in section IV-A, we use a network
size of 15,000 nodes.

Reproducing the homophilies present in the RDS sample
increases the usefulness of a scaled-up generated network
by better reflecting the biases portrayed by individuals in
associating with others that share similar features. For this
paper, RDS Analyst was used to calculate both recruitment
homophily, which is the tendency for respondents within
the RDS survey to recruit others with similar traits, and
population homophily, which is the estimated homophily of
the underlying social network.

The method used to calculate the recruitment and pop-
ulation homophilies for a given feature f is as follows.
To describe respondents and their responses, we notate the
response of a respondent x as λ(x). A recruit is represented
by β, and α(x) represents the recruiter of x.

For feature f , Ωrecruitment(f) represents the number of
recruits that share the same response as their recruiter for
the given feature f . This can be described as the sum of
responses:

Ωrecruitment(f) =

N∑
i=1

(λ(βi) = λ(α(βi))|f).

The expected number of α(β)-β-similar responses to fea-
ture f that would be received if homophily were not present
in the respondent dataset is represented by Ωexpected-RDS(f).
Recruitment homophily for the feature K is then calculated
as the ratio of Ωrecruitment(f) to Ωexpected-RDS(f):

Recruitment Homophily(f) ≡ Ωrecruitment(f)

Ωexpected-RDS(f)
.
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Similarly, the population homophily is the ratio of ex-
pected pairs sharing response f in the underlying social
network to the number of pairs sharing response f that
would be expected in a network without homophily. We
use population homophily as the target homophily for the
networks we generate.

A homophily of 1 implies that the number of homophilous
pairs calculated for the feature is equal to the number of
expected pairs over a random network, and therefore does
not hold significance. A homophily greater than 1 implies
a larger tendency for pairs to share trait f than would be
observed by chance, while homophily less than 1 implies
heterophily, or that pairs are less likely to share attribute f
than would be expected if pairs were matched randomly [22].

C. Algorithm for Configuration Network

We have developed a methodology by which RDS data
can be scaled up to a representation of the underlying hid-
den network, preserving pairwise homophily (for multiple,
overlapping feature sets) at the rate observed in the RDS
sample. Our algorithm takes three parameters:
• G, a network whose nodes will be randomly assigned

features and whose edges will be re-wired to attain a
specified homophily for those features.

• P , a list of the frequencies at which features occur.
For three features, for example, residence.mine, res-
idence.shelter, and education.college, this list might
be P = [residence.mine:0.372, residence.shelter:0.098,
education.college:0.025].

• H , a list of homophily targets. For the previous ex-
ample, this might be H = [residence.mine:1.048, resi-
dence.shelter:1.740, education.college:0.733].

Our algorithm begins by compiling a list F of boolean
features, matching the features in P and H . Each individual
node i ∈ G is assigned its own corresponding list of
true/false values Fi indicating whether it is included in
that feature. For example, if F = [residence.mine, resi-
dence.shelter, education.college], a specific node might have
a feature set Fi = [residence.mine:0, residence.shelter:1,
education.college:1], indicating that node i does not stay at
their own residence, does live in a homeless shelter, and does
have a college education. A node’s inclusion for each feature
f ∈ F is determined randomly with probability pf ∈ P . We
lay out the algorithm as a set of steps followed in order:

1) For each feature fi ∈ Fi of node i ∈ G, randomly
assign fi either a 1 with probability pf ∈ P or a 0
with probability 1− pf

2) For each feature f ∈ F , create sets Sf and S̄f of nodes
that are positive or negative for feature f (2|F | sets).

3) Repeat the following steps a user-defined number of
times, converging the homophilies of the network to
the targets in H:

a) For each feature f ∈ F , place edges attached to
the nodes in set Sf into two sets, Ef and Xf :
• Ef contains homophilous edges (i, j), where
fi = fj = 1

• Xf contains heterophilous edges (i, j), where
fi 6= fj

b) For each feature f ∈ F , calculate the number
of re-wires rf which must be performed (and the
direction, homophilous or heterophilous) to reach
the target homophily.

rf = pfhf |Ef +Xf | − |Ef |

c) If rf is positive, randomly choose rf edges from
Xf and remove them from the network. Then,
choose rf pairs of nodes i and j such that i ∈ Sf
and j ∈ S̄f and add the edges eij to the network.

d) If rf is negative, randomly choose rf edges from
Ef and remove them from the network. Then,
choose rf pairs of nodes i and j such that i ∈ Sf
and j ∈ Sf and add the edges eij to the network.

Because the re-wiring process for one feature may add
or remove edges that affect the homophily of another fea-
ture, the re-wiring must be run several times to allow the
homophily metrics to converge to the desired homophily for
every feature.

D. Simulation of RDS

To simulate a respondent-driven sample over the generated
network, we use an approach similar to [23], but with some
important differences. The algorithm used is as follows.

1) Select α seeds at random from all the nodes in the
network and add them to set A.

2) Create an empty set R of responsive nodes.
3) Pop one node from A and add it to R.
4) Pop a random node i from R and add it to the

simulated sample S. If R is empty, pop a random
node from B (The list of recruited nodes that did not
respond, See step 5a), or if B is empty, from A (unused
seed nodes)

5) Randomly choose between 0 and 6 nodes adjacent to
i for it to recruit.

a) For each recruited node ir, choose with proba-
bility pr whether to add it to R. These nodes are
considered to have responded. If a node does not
respond, it is added to a list B to ensure it is not
recruited again.

6) If |S|ω ≥
α−|A|
α , pop another seed from A and add it

to R (Where ω is the rds sample size goal, α is the
number of seeds selected in step 1, |S| is the size of
the sample so far, and |A| is the number of remaining
unused seeds.)

7) repeat step 4 until the sample reaches its size goal ω.
Note that seeds do not all respond at the beginning of the

sampling chain. Instead, one seed responds at the beginning,
and the rest are added linearly as the sample grows in size.
If the recruitment chain ends before the desired sample size
is reached, nodes from B respond to continue the chain.
This is a notable difference between our simulation and [23],
in which additional seeds are added when faced with this
situation.
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Fig. 1. Average size distribution of 40 simulated RDS samples vs
SATHCAP

IV. RESULTS

A. Homophily Configuration Networks Generated

Our algorithm was used to create 15,000-node multi-
homophily configuration networks with 46 binary features.
These features were one-hot encoded from 9 categorical
features in the original data. We used a scale-free Barabasi-
Albert graph as input, because previous work [21] suggests
that the population network underlying SATHCAP is scale-
free. Thirteen passes of the re-wiring portion of the algorithm
were required.

For parameters P and H , we used the feature frequencies
and homophilies estimated for SATHCAP’s underlying social
network. These values can be seen in Table I, in columns
labeled “Freq.” and “Target.”

We changed the feature assignment portion of the algo-
rithm to better model the population sampled by SATHCAP.
In the algorithm described in section III-C, the first step is to
randomly assign the features according to the probabilities in
P , independently determining based on probability pf ∈ P
whether node i will be positive for feature f . Our features
were one-hot encoded from SATHCAP questions, and are
therefore not independent. An example question is “Are
you (choose one): male, female, trans male to female, trans
female to male?” These responses were converted to four
boolean features, sex.male, sex.female, sex.transFTM and
sex.transMTF. These features should not be assigned using
independent probabilities because there is a possibility that
they will coincide, which is not a good model of the original
SATHCAP survey data. To avoid contradictory collisions, we
grouped the features by original question (shown in bold in
Table I) and randomly assigned only one response to a given
node, based on their calculated frequencies.

B. Comparison of Homophily Configuration Networks
against Predicted Population Homophilies

Table I shows population homophily results for the 46 fea-
tures we use for our homophily configuration networks. The
“Target” column shows the estimated population homophily,
and the “Mean” column shows the mean of the homophily

(by feature) from 200 independently-generated 15,000-node
homophily configuration graphs. Note that there are two
features where the error is approximately 15%, four where
it is approximately 4%, and for the other 40, the error is less
than 2%. The root-mean-square error for all 46 homophilies
(target homophily vs mean achieved homophily) is 2.99%

There is an inverse correlation between the frequency of
a feature’s occurrence (pi for feature i) and the error in
that feature’s homophily. Both the standard deviation and
the percent error in the median are higher for features such
as sex.transFTM where the frequencies are very low.

For example, sex.transFTM has a frequency of 0.001,
which implies that in a graph of 15,000 nodes, only 15 are
transMTF. Because there are only a small number of positive
nodes for the feature, every edge added or removed from
these nodes creates a large change in homophily, resulting in
the relatively large errors seen in the configured homophily.
If you weigh the root-mean-square (RMS) error by frequency
(essentially taking the RMS homophily error by node instead
of by feature) the RMS error drops to 0.454%.

It is important to distinguish between homophilic and
heterophilic behavior. Homophilic behavior is indicated by
homophily greater than 1, and heterophilic by homophily
less than 1. Feature orientation.hetero with a homophily
greater than 1 shows that heterosexual participants did in
fact recruit other heterosexual participants, whereas feature
sex.male with a homophily less than one indicates that
men have a slight tendency to recruit people who are not
men. An inaccuracy that flips a homophily to a heterophily
or vice versa would indicate the wrong behavior, even if
the percent error were low. Thus, it is worthwhile to note
that this particular error does not occur for any of the
mean homophilies of the homophily configuration networks
generated in Table I.

C. Simulated RDS Samples Generated

We tested our generated networks by simulating an RDS
survey on them. Our simulated samples are generated using
α = 132 seeds, because we are trying to mimic the
Chicago specific sub-graph of the SATHCAP network, which
recruited 132 seeds. When nodes who have “responded”
choose to recruit between 0 and 6 adjacent nodes, this choice
is weighted to create graph components with a specific
structure. The weights we use are based on the pattern of
seed node recruitment in the original dataset. By using only
the seed nodes, we eliminate bias toward the recruitment
tendencies of the larger components.

In section III-D, it is explained that not all seeds are
immediately available for expansion in the RDS simulation.
The reason we choose to slowly activate the seeds this way
is to better match the component size distribution of the
SATHCAP network.

A comparison of our simulated RDS and SATHCAP
component sizes is shown in Fig. 1. The figure shows the
sizes of the largest 87 connected RDS components from
SATHCAP (in black) along with the mean size of the largest
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TABLE I
HOMOPHILY MEAN AND STANDARD DEVIATIONS FOR 200

HOMOPHILY-CONFIGURATION NETWORKS AND 200 SIMULATED RDS
SAMPLES

Feature Freq.
(P)

Target
(H)

Hom.
Conf.
Mean

Std.
Dev.

RDS
Mean

Std.
Dev.

sex
male 0.619 0.782 0.782 0.005 0.843 0.018
female 0.376 0.785 0.784 0.008 0.698 0.030
transMTF 0.004 1.192 1.153 0.202 1.135 7.086
transFTM 0.001 NULL 1.049 2.733 0.750 2.634

residence
mine 0.372 1.048 1.051 0.011 1.047 0.039
family 0.320 1.050 1.051 0.013 1.058 0.047
partner 0.066 1.209 1.211 0.037 1.230 0.295
friend 0.056 1.060 1.061 0.038 1.090 0.359
hotel 0.045 1.153 1.150 0.048 1.177 0.457
shelter 0.098 1.740 1.741 0.043 1.737 0.230
street 0.026 1.296 1.301 0.057 1.281 0.842
other 0.018 0.965 0.970 0.061 0.991 1.133

homeless
yes 0.386 1.132 1.132 0.012 1.242 0.040
no 0.614 1.132 1.133 0.007 1.078 0.015

education
none 0.014 1.435 1.438 0.104 1.248 1.607
slf2 0.350 1.112 1.113 0.013 1.096 0.040
highschool 0.363 1.050 1.051 0.012 1.060 0.041
slf4 0.240 1.068 1.070 0.015 1.081 0.067
college 0.025 0.744 0.754 0.042 0.720 0.707
gradschool 0.009 0.888 0.891 0.086 0.766 2.039

work
unable 0.261 1.119 1.120 0.015 1.209 0.066
unemployed 0.561 1.141 1.140 0.009 1.081 0.016
fulltime 0.060 0.968 0.969 0.031 1.085 0.337
parttime 0.084 1.172 1.175 0.034 1.311 0.257
homemaker 0.018 0.950 0.954 0.058 1.102 1.355
student 0.005 1.219 1.203 0.180 0.938 4.035
retired 0.011 0.478 0.491 0.047 0.447 1.483

insured
yes 0.321 1.032 1.032 0.013 1.075 0.051
no 0.679 1.032 1.033 0.006 1.016 0.011

treated
yes 0.707 0.894 0.894 0.005 0.946 0.014
no 0.293 0.894 0.894 0.011 0.782 0.040

orientation
homo 0.035 1.848 1.850 0.074 2.121 0.896
bi 0.141 0.988 0.986 0.019 1.117 0.138
hetero 0.622 1.128 1.128 0.007 1.053 0.013
downlow 0.040 0.656 0.654 0.026 0.812 0.435
samegender 0.028 0.838 0.849 0.041 1.001 0.830
messingaround 0.030 0.889 0.888 0.041 0.929 0.791
transMTF 0.007 1.380 1.373 0.149 1.119 3.259
transFTM 0.004 0.596 0.724 0.259 1.604 8.049
nolabel 0.093 0.810 0.812 0.020 0.942 0.222

sexbehavior
onlymen 0.252 0.935 0.937 0.013 0.969 0.063
mostlymen 0.147 1.019 1.019 0.018 1.019 0.117
equal 0.034 0.781 0.785 0.030 0.821 0.529
mostlywomen 0.101 1.142 1.142 0.028 1.150 0.183
onlywomen 0.462 1.059 1.058 0.008 1.036 0.025
virgin 0.004 0.951 0.943 0.218 0.809 4.369

87 components of 40 simulated RDS samples (in red). Sizes
are plotted on a logarithmic scale to improve visibility.

In SATHCAP Chicago results, the rate of recruitment into
the study as a percentage of the number of coupons handed
out is 31.619%. Thus, in our simulation, once a node has
been recruited, it has a pr = 31.619% chance of responding.

D. Comparison of Simulated RDS with Actual RDS

The simulated RDS samples, created by running an RDS
simulation over the generated homophily configuration net-
works, are similar to the SATHCAP sample in component
size distribution (Fig. 1) and component structure.

In general, the homophilies of individual simulated RDS
samples vary significantly from sample to sample. Individual
samples are not precise predictors of the homophilies of
the networks they survey, nor of the homophily targets.
However, as the RDS Mean column in table I shows, the
mean sample homophily across 200 independent samples
roughly approximates the target homophily, with error less
than 15% for 85% of features (39 out of 46 features).
Similar to section IV, the largest error values coincide with
the smallest frequencies. The root-mean-square error for all
46 homophilies (target homophily vs mean RDS sample
homophily) is 16.89%.

V. CONCLUSION

In this paper we successfully demonstrate a novel Monte-
Carlo algorithm for re-wiring networks to preserve multiple
homophilies. We empirically demonstrate that this algorithm
can preserve many homophilies between simultaneously oc-
curring features with a high degree of accuracy.

We use this algorithm to create a model of the population
of low-income injection-drug users and MSM in Chicago, i.e.
the SATHCAP population. In future work, such models could
be used for expanded study of hidden populations, including
clustering analysis, identification of high-betweenness nodes,
and resilience testing.

We test our model by simulating RDS samples over
the generated networks, and comparing these against the
SATHCAP and against the predicted population homophilies.
We find that RDS samples introduce noise into homophily
measurements, but that there is an empirically valid connec-
tion between RDS sample homophilies and the homophilies
of the population underlying them, which further validates
our model.

The presented model could potentially be useful in other
areas of network science, such as the study of clustering algo-
rithms, for its ability to create networks with predetermined
groups of high homophily. The relatively high accuracy of
this model with 46 features makes it useful for modeling
networks with many overlapping communities.
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