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Abstract – In order to diagnose TMJ pathologies, we developed and 

tested a novel algorithm, MandSeg, that combines image processing and 

machine learning approaches for automatically segmenting the 

mandibular condyles and ramus. A deep neural network based on the U-

Net architecture was trained for this task, using 109 cone-beam 

computed tomography (CBCT) scans. The ground truth label maps were 

manually segmented by clinicians. The U-Net takes 2D slices extracted 

from the 3D volumetric images. All the 3D scans were cropped 

depending on their size in order to keep only the mandibular region of 

interest. The same anatomic cropping region was used for every scan in 

the dataset. The scans were acquired at different centers with different 

resolutions. Therefore, we resized all scans to 512512 in the pre-

processing step where we also performed contrast adjustment as the 

original scans had low contrast. After the pre-processing, around 350 

slices were extracted from each scan, and used to train the U-Net model. 

For the cross-validation, the dataset was divided into 10 folds. The 

training was performed with 60 epochs, a batch size of 8 and a learning 

rate of 210-5. The average performance of the models on the test set 

presented 0.95 ± 0.05 AUC, 0.93 ± 0.06 sensitivity, 0.9998 ± 0.0001 

specificity, 0.9996 ± 0.0003 accuracy, and 0.91 ± 0.03 F1 score. This study 

findings suggest that fast and efficient CBCT image segmentation of the 

mandibular condyles and ramus from different clinical data sets and 

centers can be analyzed effectively. Future studies can now extract 

radiomic and imaging features as potentially relevant objective 

diagnostic criteria for TMJ pathologies, such as osteoarthritis (OA). The 

proposed segmentation will allow large datasets to be analyzed more 

efficiently for disease classification. 

I. INTRODUCTION 

Osteoarthritis (OA) is a top cause of chronic disability, 

and with aging, the disease progresses to considerable 

structural and functional alterations in the joint. If the 

condition is detected earlier, treatment can prevent the large 

joint destruction; however, there is a lack of studies focusing 

on the early diagnosis [1-3].  There is no cure for OA, and  
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current treatments attempt to reduce pain and improve 

function by slowing disease progression. The 

Temporomandibular joints (TMJ) are small joints that 

connect the lower jaw (mandible) to the skull. After chronic 

low back pain, TMJ disorders (TMD) are the second most 

commonly occurring musculoskeletal conditions, resulting in 

pain and disability, with an annual cost estimated at $4 billion 

[4]. 

The recommended Diagnostic Criteria for TMD protocol 

[5] include clinical and imaging diagnostic criteria for 

differentiating health and disease status, and recent studies 

have indicated the biological markers may also improve the 

diagnostic sensitivity and specificity [6]. However, feature 

extraction from Cone-Beam Computed Tomography (CBCT) 

images remains time consuming before this integrative model 

can be applied in larger scale studies.  

 There are some commercial or open-source tools such as 

ITK-SNAP [7] and 3D-Slicer [8] that clinicians use to 

interactively segment condyles in each individual image at a 

time and calculate some parameters of images. However, this 

process is time-consuming and challenging for clinicians due 

to low signal/noise ratio of the large field of view CBCT 

images commonly used in dentistry [9]. Therefore, our goal is 

to develop a method to automatically segment the mandibular 

ramus. More efficient and reproducible mandibular 

segmentation will help clinicians extract features from the 

mandibular condyles and ramus, analyze changes in the shape 

and anatomy of the condyles over time to properly diagnose 

the disease, as well as plan the anatomy for surgical 

interventions. This would facilitate the study of the TMJ OA 

and could help prevent the disease progression and predict the 

disease at early stages. 

Manual, user interactive or semi-automatic methods use 

different imaging modalities such as magnetic resonance 

(MR) imaging, computed tomography (CT), cone-beam 

computed tomography (CBCT), ultrasonography, and 

conventional radiography [10-17] to segment the mandibular 

condyle and ramus with applications for TMJ and dentofacial 

treatment planning and assessment of outcomes. Up to date, 

automatic segmentation tools for condylar and thin bone 

cortical areas of the mandibular ramus have been limited to 

high resolution CBCT images [18] or small sample size 

acquired with the same scanning protocol [19]. The algorithm 

presented in this paper aimed to create a fully automated 

method to segment the ramus and condyle out of large field 
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CBCT scans of the head from 4 different clinical centers and 

scanning acquisition protocols. The dataset is presented in 

Section II and the different steps of the proposed method are 

explained in Section III. We then show the experimental 

results of the proposed method and compare them with 

condyles manually segmented by clinician experts. Finally, 

conclusion remarks are presented in Section IV. 

II. DATASET 

We used de-identified datasets from the University of 

Michigan, State University of São Paulo, Federal University of 

Goias and Federal University of Ceara, that consisted of 3D 

large field of view scans CBCT scans of the head of 109 

patients. At the different clinical centers, the images were 

acquired with different scanners, spatial resolutions varying 

from 0.2 to 0.4mm3 voxels, and image acquisition protocols.  

The dataset used in this study contains both patients with 

radiographic diagnosis of osteoarthritis and healthy condyles. 

The inclusion of both OA and non-OA patients in the dataset 

helps develop a more generalizable segmentation model 

across healthy and diseased patients. The images were first 

interactively segmented by clinicians using ITK-SNAP 

(3.8.0) or 3D Slicer (4.11). These segmentations were used as 

ground-truth to train and evaluate the performance of the 

proposed method. 

III. PROPOSED METHOD AND 

EXPERIMENTAL RESULTS 

The proposed method developed to segment the 

mandibular condyles and ramus out of CBCT scans is based 

on image processing and machine learning approaches that 

are summarized in the flowchart shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We first describe image pre-processing to deal with the 

quality of the images and region of interest. After that, we 

explain the machine learning techniques used to segment the 

mandibular condyles and ramus and to detect its contours out 

of the craniofacial structures. After identification of the 

mandibular condyles and ramus contours, we perform post-

processing for artifact removal and improvement the 

segmentations quality. 

 

Figure 2 - An example of one raw CBCT image 

A. Pre-processing 

Figure 2 shows an example of a cross-sectional image 

from a raw large field of view CBCT scan with the mandibular 

ramus and condyles on each side of the image. The head large 

field CBCT scans were low contrast images, therefore we 

adjusted the contrast to improve the training of our deep 

learning model and help it to make a better prediction. We 

performed slice cropping according to the number of slices in 

each scan to keep only the region of interest where the 

condyles are in the large field of view scans. The algorithm 

selected the same anatomic cropping region for every 3D scan 

in the dataset, then split it into 2D cross-sections, and every 

cross-section was resized to 512  512 pixels to standardize 

the dataset. Each CBCT scan resulted in 300-400 cross-

sectional images after the pre-processing, depending on the 

number of slices composing the scan, which variates with the 

acquisition protocol used. 

 

 Figure 3 - Scan after pre-processing

 

 

Figure 3 shows an example of a CBCT image after pre-

processing. The output of the pre-processing is used in the 

next step where we train our deep learning model. 

Raw CBCT Scan 

E x t r a c t i n g  3 0 0 - 4 0 0  s l i ce s  f r o m  e a ch  s c an  
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1 0  f o l d s  

T r a i n in g  a  U - N e t  m o d e l  w i th  6 0  ep o ch s ,  a  b a t c h  
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- 5
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P o s t - p r o c e s s in g :  r e m o v a l  o f  a r t e f a c t s  an d  

r e c o n s t r u c t i o n  o f  3 D  s c an  

Figure 1 - Schematic diagram of the proposed method 
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B. U-Net training 

We used the images obtained from the pre-processing to 

train a U-Net model. This network was first developed for 

biomedical image segmentation and later utilized in other 

applications, such as field boundary extraction from satellite 

images [20]. 

We split the dataset into 2 parts: 90 patients CBCT scans 

for training (approximately 80% of the total dataset) and 19 

patients CBCT scans for testing (approximately 20% of the 

total dataset). We performed a 10 folds cross-validation on the 

training set and used the testing set to evaluate the model 

performances. Each fold of the cross-validation contained the 

cross-sectional images from 9 scans. We equally distributed 

the scans into the different folds according to the acquisition 

center, to avoid the overfitting of the model. 

The models were trained during 60 epochs to ensure that 

the model would converge, with a batch size of 8, due to 

computer performance limitations, and a learning rate of 

210-5, to be able to determine with precision the most 

appropriate epoch. We used Tensorboard to measure and 

visualize the loss and accuracy of the model and selected the 

epoch of the model before it overfitted.  

We gave the high-contrast cross-sectional images from the 

testing dataset to every trained model for them to predict a 

segmentation of the condyles for every image. 

C. Post-processing 

The post-processing consisted in binarizing the output 

images coming from the U-Net model using a threshold based 

on Otsu’s method, resize them to their original size, and 

adding them to reconstitute the original 3D scan. We then 

calculated the volume of each component on the 3D image, 

and used a volumetric threshold depending on the size of the 

image to remove small objects (artefacts) that are not part of 

the condyle. 

The performance of the proposed segmentation method 

was evaluated by comparing the output of the method to the 

ground truth, scans manually segmented by clinicians.  

Figure 4 shows both the manual segmentation by the 

clinicians and the automatic segmentations output by our 

algorithm. 

We used Area Under the Receiver Operating 

Characteristic Curve (AUC), F1 score, accuracy, sensitivity 

and specificity to quantify the precision of the models. These 

measurements vary from zero to one, where zero means no 

superposition between the two volumes, and one shows a 

perfect superposition between both. They were performed on 

the binarized 3D images resulting from the post-processing. 

The results we obtained for the validation dataset and the 

testing dataset are summarized in the following tables. 

 

Table 1 - AUC, F1 Score, accuracy, sensitivity and specificity 

of the validation dataset 

Table 2 - AUC, F1 Score, accuracy, sensitivity and specificity 

of the test dataset 

The average measurements of the AUC, F1 Score, 

accuracy, sensitivity and specificity of the testing dataset for 

the 10 folds of the cross-validation were each above 0.9 as 

shown in Tables 1 and 2, which demonstrates the precision of 

the automatic segmentations compared to the ground truth 

interactive segmentations. Additionally, the standard 

deviations were quite low, indicating that the automatic 

segmentations were very consistent and generalizable to 

unseen patients. 

We selected the trained model presenting the highest F1 

score when evaluating the model on the test dataset and used 

it to deploy the validated algorithm as a docker container, 

called MandSeg, in an open-source data management system, 

the Data Storage for Computation and Integration (DSCI) 

[21], that allows clinicians and researchers to access a secure 

user interface to compute automated segmentations for their 

patients or study datasets.  

 

Validation 

dataset 
AUC 

F1 

score 
Sensitivity Specificity Accuracy 

Average 0.955 0.907 0.923 0.9998 0.9996 

Standard 

deviation 
0.040 0.045 0.065 0.0002 0.0003 

Test 

dataset 
AUC 

F1 

score 
Sensitivity Specificity Accuracy 

Average 0.954 0.915 0.926 0.9998 0.9996 

Standard 

deviation 
0.051 0.031 0.057 0.0001 0.0003 

Figure 4 - Comparison of manual segmentations (left) 

and automatic segmentations (right), for two different 

cases 
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IV. CONCLUSION AND FUTURE WORK 

The MandSeg algorithm produces accurate automated 

mandibular ramus and condyles segmentation compared to 

the ground truth interactive segmentation. Such an efficient 

automatic mandibular segmentation of CBCT scans will help 

clinicians early diagnose and predict TMJ disease 

progression by extracting imaging features of the condyle 

scans. We expect that the fully automated mandibular ramus 

and condyles segmentation algorithm presented in this study 

will improve accuracy in the classification of degeneration in 

the TMJs even when using the low-resolution large field of 

view CBCT images that are conventionally taken for jaw 

surgery planning.  

The current dataset is only composed of 109 scans, 

coming from 4 different clinical centers and the trained 

models utilized segmentations of only the condyles and 

ramus, which are the most challenging mandibular areas to 

segment due to the thinness of the cortical bone in those 

anatomic regions. Our future objectives include the addition 

of scans from other clinical centers, training new deep 

learning models with segmentations of the full mandibles, and 

integration of the resulting automatic segmentations with 

other imaging modalities such as digital dental models for 

clinical applications in dentistry (Figures 5 and 6). 
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Figure 5 - Additional training with datasets from other 

clinical centers for automatic segmentation of the lower 

jaw (full mandible) 

Figure 6 - Integration of lower jaw automatic 

segmentation with digital dental models for decision 

support systems in dentistry 
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