
  

1
 

Abstract—Objective pain quantification is an important but 

difficult goal. Electrodermal activity (EDA) has been widely 

explored for this purpose, given its reported sensitivity to pain. 

However, cognitive stress can hinder successful estimation of 

physical pain when using EDA signals. We collected EDA signals 

from ten subjects (5 male and 5 female) undergoing pain 

stimulation, and calculated phasic, tonic, and frequency-domain 

features. Each subject experienced pain with and without stress. 

Three low and three high pain sessions were induced using two 

thermal grills (low-level for visual analog scale [VAS] 4 or 5 and 

high-level for VAS 7 or more). The Stroop test was performed 

for inducing cognitive stress. Significant differences between 

EDA features of painless and pain segments were observed. 

Significant differences between no pain and stress were also 

observed. Furthermore, we compared differences in EDA 

features between females and males under pain and cognitive 

stress. Frequency-domain EDA features of pain increased with 

stress for both females and males. Frequency-domain features 

derived from females also showed higher standard deviation 

than did those derived from males. We performed machine 

learning analysis and evaluated the models using leave-one-

subject-out cross-validation. We obtained balanced accuracies 

of 63.5%, 72.4%, and 53.2% (combined, male, and female) when 

using training data of the same sex and 47.6%, 57.4%, and 

42.7% (combined, male, and female) when using different sex for 

training.  

 

Clinical Relevance—Our preliminary results suggest that sex 

of patients should be considered to increase the accuracy of pain 

quantification based on EDA in the presence of cognitive stress. 

I. INTRODUCTION 

Accurate detection of pain intensity is an important factor 

in clinical diagnosis. However, assessment of pain intensity 

has always been challenging due to its subjectiveness. To help 

communicate relative pain intensity, assessment tools have 

included numbers, color codes, or facial expressions [1], [2]. 

However, they do not provide continuous monitoring, they 

are still subjective, and they can be gamed. If pain could truly 

be assessed objectively and accurately, medication could be 

appropriately prescribed and the use of opioids could be 

better-controlled.  

For these reasons, there have been many attempts to 

develop objective pain quantification methods using 

noninvasively measured physiological signals. As the 

sympathetic nervous system’s response is the most sensitive 

to pain intensity [3]–[5], electrodermal activity (EDA) has 
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been explored to detect and quantify pain [6]–[8], because it 

measures sympathetic-related sweat gland activations. 

However, other sympathetic-induced activities such as 

cognitive stress can affect EDA, hence hindering accurate 

detection of pain [9], [10]. It has also been observed that pain 

is influenced by stress [11]. Logan et al. found that pain 

caused by capsaicin during the Stroop test led to stress-

induced analgesia in men but stressed-induced hyperalgesia 

in women (i.e., enhanced sensitivity to pain) [12]. Also, 

several studies showed significant difference in EDA signals 

between males and females [13], [14]. Therefore, we have 

intended to objectively estimate physical pain in the presence 

of stress in healthy subjects, and hypothesized that sex must 

be considered for more accurate pain quantification.  

II. METHODS 

A. Experiments 

Five females and five males, a total of 10 subjects (22-34 
years old), were recruited. Shimmer 3 was used to collect EDA 
signals with electrodes placed on the index and middle fingers 
of the left hand (Shimmer, Dublin, Ireland). The experimental 
protocol consisted of a period of 1) 2-min baseline, 2) 2-min 
cognitive stress (the Stroop test), 3) pain-only stimulation, then 
4) simultaneous cognitive stress and pain stimulation. For the 
Stroop test, subjects were asked to speak the color of the font 
shown on the screen, whose text spelled out a different color; 
the font color changed every 1-3 seconds. The accuracy of 
naming the correct color was not evaluated as we only aimed 
to induce cognitive stress. The colors of the font were red, 
blue, green, yellow, purple, and black.  

We built two aluminum thermal grills to induce high and 
low pain levels without any tissue injury.  The pipes of the 
thermal grills for the cold (icy) and warm (50-58 °C) water are 
interlaced so that the contrast in temperatures causes pain 
sensations without any tissue injury [15]. For low and high 
levels of pain, the warm water temperature was set to induce 
visual analogue scale (VAS) levels 4-5 and 7-8 out of 10, 
respectively, for each subject. After setting the water 
temperature, three low- and three high-pain levels were tested 
for 30-60 second randomized intervals. Subjects were asked to 
put their right hands on the thermal grill for five seconds or 
less until they could not bear the pain. VAS was reported for 
each pain stimulus. The study protocol was approved by the 
Institutional Review Board of the University of Connecticut. 
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B. EDA features 
 

1) Preprocessing 

EDA signals were resampled to 4 Hz using a cubic spline 

algorithm from 120 Hz, the original data sampling rate. We 

then applied a median filter with a 1-sec window to remove 

motion artifacts. Finally, the signal was resampled to 2 Hz. 

2) Time-Varying Index of Sympathetic Activity (TVSymp) 

TVSymp was shown to be an effective quantitative index 

of sympathetic response elicited by cognitive stress and pain 

[6], [8], [9], [16]. First, EDA signals were normalized to unit 

variance. Then, dynamics of the signal in the frequency range 

between 0.08-0.24 Hz were extracted using the variable 

frequency complex demodulation technique [17]. The 

extracted components were reconstructed using the Hilbert 

transform to obtain the instantaneous amplitude of the signal. 

We also calculated modified TVSymp (MTVSymp) to 

minimize other sympathetic arousal from TVSymp a(t) by the 

following equation [8]:  

𝑀𝑇𝑉𝑆𝑦𝑚𝑝 = 𝑚𝑎𝑥 (0, 𝑎(𝑡) − 𝑚𝑒𝑎𝑛(𝑎(𝑡 − 10: 𝑡)))  (1) 

3) Phasic and Tonic Features 

EDA signals can be decomposed into phasic and tonic 

components; they represent fast and slow dynamics of the 

signal, respectively. We chose cvxEDA as it showed in our 

previous studies better performance in classifying different 

pain levels than other methods [8], [18]. The cvxEDA also 

estimates phasic drivers that supposedly represent the 

underlying sympathetic activation. Finally, we calculated 

derivatives of the phasic (dPhEDA) and tonic (dTonEDA) 

components using the five-point stencil:  

𝑦(𝑛) =
𝑥(𝑛−2)−8∙𝑥(𝑛−1)+ 𝑥∙𝑃(𝑛+1)−𝑥(𝑛+2)

12 ∙(1/𝑓𝑠)
       (2) 

where the sampling frequency 𝑓𝑠  was set to 2 Hz. To 

summarize, we calculated phasic, tonic, phasic driver, 

dPhEDA, dTonEDA, TVSymp, MTVSymp indices as shown 

in Fig. 1. 

 
Figure 1. An example of EDA features with pain stimuli (red bars) 

C. Statistics and Machine Learning 

For statistical evaluation and machine learning, we put 30-

second segments into one of the following categories: no pain, 

stress, low pain, low pain with stress, high pain, and high pain 

with stress. We calculated the mean and standard deviation of 

each of the feature indices for each category. Non-

overlapping 30-second windows were extracted from 2-min 

cognitive stress and 2-min baseline for no pain and stress. 30-

second windows after each pain stimulus were considered to 

represent pain data segments. Pain segments were categorized 

as low (if VAS was between 1-6) and high pain (VAS >=7). 

We also calculated significant difference between the 

categories for only both female and male subjects as the 

number of subjects was not enough to compare between 

females and males. First, normality was examined using the 

Kolmogorov–Smirnov test. Wilcoxon signed-rank test and t-

test were then used for non-normally and normally distributed 

data, respectively.  

We also performed machine learning with leave-one-

subject-out cross-validation using a training set with: 1) the 

same sex as the test sets and 2) the opposite sex. We used 

mean, standard deviation, skewness, and kurtosis values of 

each EDA feature index. We examined support vector 

machine with linear kernel (SVM), random forest (RF) with 

100 estimators and the Gini impurity criterion, and multi-

layer perceptron (MLP) with the following parameters: 100 

hidden units, rectifier with unit activation function, Adam 

optimizer, and 0.001 learning rate. The parameter C of SVM 

was chosen using the grid-search cross-validation with a 

group four-fold cross-validation consisting of 1, 10, 100, and 

1000. We calculated feature importance using the same 

classifier methods consisting of SVM and RF, and RF for 

MLP with a grid-search cross-validation with a group four-

fold cross-validation. Features that had greater importance 

than the average were selected for each fold.  

III. RESULTS 

Table 1 shows the mean and standard deviation of EDA 

features. All EDA features except for dPhEDA and Tonic 

showed significant differences between no pain and stress. 

Phasic and phasic driver for the painless segments showed 

higher mean values than did those for the pain segments, 

while all other features for the pain segments exhibited higher 

mean values. Low pain with stress showed lower values for 

phasic features than without stress, while the mean values of 

high pain with stress were higher than those of high pain 

without stress. Phasic component and phasic driver of pain 

segments showed significant difference with those of painless 

segments except for low pain, which was significantly 

different with no pain only. Moreover, dPhEDA showed 

significant difference in values between painless segments 

and high pain with stress.  

Tonic showed significant difference between painless 

segments and low pain with stress. No pain for dTonEDA 

showed significant differences with all other categories but 

low pain with stress. Pain segments of TVSymp and 

MTVSymp showed significant difference between painless 

and pain segments. Only MTVSymp showed a significant 

difference between low pain and high pain with stress. 

TVSymp and MTVSymp also exhibited increased mean 

values with stress for all categories (i.e., no pain, low pain, 

and high pain with stress showed higher mean values of the 

features than each of those without stress.)  
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 The phasic features of females showed higher standard 

deviation than did those of males except for low pain with 

stress. Tonic, TVSymp, and MTVSymp exhibited higher 

standard deviation for females than for males. TVSymp and 

MTVSymp derived from females showed greater mean 

during painless segments than did those of males, while male 

subjects exhibited greater mean for pain segments. 

Table 2 shows comparison of classification results 

between female and male subjects. Balanced accuracies were 

higher when the same sex was used for training except for a 

case. Balanced accuracy values of 63.5% and 53.2% were 

obtained for the same and different sex, respectively, when 

both stress and no stress datasets were used. For male and 

female subjects, balanced accuracies of 72.4% and 53.2% 

were obtained, respectively, as shown in Table 3.  

IV. DISCUSSIONS 

Many factors can affect sympathetic nervous activities and 

EDA signals. We tested the feasibility of pain detection in the 

presence of cognitive stress, and how including sex 

differentiation in the model improved the performance of the 

models. All features except for tonic features showed higher 

values for high pain than for low pain. Also, females and 

males showed different trends and distributions of EDA 

features throughout the pain and stress categories, as shown 

in Table 1 and Figure 2. Females showed higher standard 

deviation than males in most EDA features, which resulted in 

poorer performance of classifiers, as shown in Figure 3. We 

observed higher balanced accuracies of most classifiers when 

the same sex was used for training classifiers. 

 We induced cognitive stress using the Stroop task. 

dTonEDA and the frequency-domain features (TVSymp and 

MTVSymp) for pain with stress showed higher and lower 

mean values, respectively, than for pain without stress. EDA 

features for no pain segments were significantly different 

from at least one of pain segments. Notably, MTVSymp 

showed a significant difference between low and high pain 

TABLE I. MEAN ± STANDARD DEVIATION OF EDA FEATURES 

Segments Painless Segments Low Pain Segments High Pain Segments 

Category No Pain0 Stress0+ Low Pain1 
Low Pain1+ 

w/ Stress 
High Pain2 

High Pain2+ 

w/ Stress 

P
h

a
si

c
 F

e
a

tu
r
e
s Phasic 

All 0.917±2.561 0.601±1.989 0 0.395±0.892 0 0.186±0.167 0,0+ 0.552±1.086 0,0+ 0.967±1.586 0,0+ 

Male 0.012±0.018 0.040±0.028 0.188±0.078 0.267±0.160 0.304±0.206 0.257±0.182 

Female 1.821±3.389 1.222±2.756 0.644±1.276 0.052±0.051 0.751±1.414 1.361±1.860 

Phasic Driver 

All 0.702±1.964 0.458±1.514 0 0.312±0.709 0 0.146±0.133 0,0+ 0.427±0.840 0,0+ 0.766±1.247 0,0+ 

Male 0.008±0.010 0.031±0.023 0.145±0.061 0.211±0.127 0.235±0.160 0.207±0.150 

Female 1.396±2.599 0.930±2.098 0.512±1.014 0.038±0.037 0.582±1.094 1.076±1.462 

dPhEDA 

All -0.001±0.004 -0.003±0.012 0.004±0.011 0.001±0.005 0.003±0.010 0.012±0.024 0,0+ 

Male -0.001±0.002 0.000±0.002 0.000±0.003 0.002±0.006 0.000±0.001 0.004±0.005 

Female -0.001±0.005 -0.006±0.017 0.008±0.016 -0.001±0.002 0.005±0.014 0.016±0.028 

T
o

n
ic

 

F
e
a

tu
re

s Tonic 

All 1.622±0.731 1.763±0.818 2.917±2.710 2.823±1.427 0,0+ 3.008±3.120 4.746±4.745 

Male 1.755±0.643 1.830±0.579 2.686±0.786 3.443±1.116 2.610±0.706 3.029±1.535 

Female 1.489±0.787 1.688±1.014 3.194±3.908 1.791±1.285 3.326±4.111 5.700±5.583 

dTonEDA 

All -0.001±0.004 0.004±0.006 0 0.006±0.014 0 0.003±0.009 0.009±0.010 0 0.001±0.017 0 

Male -0.003±0.004 0.003±0.006 0.005±0.010 0.003±0.010 0.015±0.011 0.008±0.011 

Female 0.000±0.003 0.004±0.007 0.007±0.018 0.003±0.004 0.005±0.005 -0.002±0.019 

F
r
e
q

u
e
n

c
y
 

d
o

m
a

in
 

F
e
a

tu
re

s TVSymp 

All 0.243±0.444 0.591±0.769 0 1.182±0.641 0,0+ 1.368±0.621 0,0+ 1.348±0.716 0,0+ 1.631±0.653 0,0+ 

Male 0.186±0.240 0.454±0.283 1.591±0.373 1.636±0.442 1.880±0.426 1.975±0.489 

Female 0.300±0.575 0.743±1.054 0.691±0.542 0.922±0.620 0.922±0.608 1.440±0.654 

MTVSymp 

All 0.040±0.090 0.102±0.130 0 0.215±0.122 0,0+ 0.271±0.147 0,0+ 0.244±0.140 0,0+ 0.325±0.141 0,0+,1 

Male 0.027±0.038 0.081±0.051 0.295±0.084 0.325±0.126 0.317±0.110 0.408±0.110 

Female 0.052±0.120 0.127±0.177 0.120±0.087 0.183±0.137 0.186±0.134 0.279±0.136 

Superscript indices indicate which segments show significant difference with that level for that approach (p < 0.05). Significant difference was only calculated 
for all subjects (both female and male). 

TABLE II. CLASSIFICATION RESULTS 

 Train Dataset 
No 

Stress 
Stress 

All 

 Test Dataset 
No 

Stress 
Stress All 

S
a
m

e 
S

ex
 b

e
tw

ee
n

  
T

ra
in

 a
n

d
 T

es
t 

d
a

ta
 All 

N 120 120 120 120 240 

SVM 0.562 0.576 0.513 0.639 0.576 

RF 0.563 0.613 0.560 0.591 0.574 

MLP 0.633 0.529 0.624 0.651 0.635 

Male 

N 60 60 60 60 120 

SVM 0.731 0.634 0.602 0.651 0.624 

RF 0.694 0.601 0.685 0.602 0.644 

MLP 0.833 0.651 0.704 0.734 0.724 

Female 

N 60 60 60 60 120 

SVM 0.378 0.505 0.411 0.612 0.507 

RF 0.419 0.537 0.419 0.492 0.457 

MLP 0.433 0.415 0.544 0.528 0.532 

D
if

fe
re

n
t 

S
ex

 b
e
tw

ee
n

  
T

ra
in

 a
n

d
 T

es
t 

d
a

ta
 All 

N 120 120 120 120 240 

SVM 0.462 0.438 0.421 0.461 0.440 

RF 0.487 0.443 0.510 0.430 0.468 

MLP 0.422 0.462 0.423 0.531 0.476 

Male 

N 60 60 60 60 120 

SVM 0.630 0.456 0.556 0.459 0.512 

RF 0.583 0.589 0.648 0.490 0.565 

MLP 0.565 0.639 0.519 0.623 0.574 

Female 

N 60 60 60 60 120 

SVM 0.311 0.432 0.311 0.460 0.388 

RF 0.426 0.410 0.404 0.448 0.427 

MLP 0.307 0.339 0.352 0.469 0.409 

N = the number of samples 
 

TABLE III. CONFUSION MATRICES OF FEMALE AND MALE SUBJECTS 

MLP 

Predicted Pain 

Female (53.2%) Male (72.4%) 

No  Low  High  No  Low  High  

True 

Pain 

No  64.9% 21.6% 13.5% 97.4% 2.6% 0.0% 

Low  22.2% 37.0% 40.7% 7.9% 60.5% 31.6% 

High  18.2% 24.2% 57.6% 4.5% 36.4% 59.1% 
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with stress.  dTonEDA between low pain with stress and high 

pain was also marginally significant (p = 0.051). This resulted 

in poorer classification performance for low and high pain, 

compared to that for no pain, as shown in Table 3.  

The main limitation of the study is the low number of 

subjects, as this study is preliminary. Moreover, more factors 

such as age and race might affect pain and stress [19], [20]. 

Finally, different pain behaviors can be observed based on the 

types of stress (e.g., stress-induced analgesia or stress-

induced hyperalgesia) [11]. These must be considered in the 

future for more accurate classifications. 
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(e) (f) (g) 

Figure 2.  Box plots of (a) Phasic, (b) Phasic Driver, (c) dPhEDA, (d) Tonic, (e) dTonEDA, (f) TVSymp, and (g) MTVSymp. 
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