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Abstract— Riemannian tangent space methods offer state-
of-the-art performance in magnetoencephalography (MEG)
and electroencephalography (EEG) based applications such
as brain-computer interfaces and biomarker development.
One limitation, particularly relevant for biomarker develop-
ment, is limited model interpretability compared to established
component-based methods. Here, we propose a method to
transform the parameters of linear tangent space models into
interpretable patterns. Using typical assumptions, we show that
this approach identifies the true patterns of latent sources,
encoding a target signal. In simulations and two real MEG
and EEG datasets, we demonstrate the validity of the proposed
approach and investigate its behavior when the model assump-
tions are violated. Our results confirm that Riemannian tangent
space methods are robust to differences in the source patterns
across observations. We found that this robustness property
also transfers to the associated patterns.

I. INTRODUCTION

Magnetoencephalography (MEG) and electroencephalogra-

phy (EEG) capture a linear mixture of brain and noise

signals [1]. In a supervised setting, where the goal is to

infer a target signal from the power of latent oscillatory

sources, component-based methods like common spatial pat-

terns (CSP) [2,3] for discrete targets or source power co-

modulation (SPOC) [4] for continuous targets are widely

used [5]. Recently, they have been outperformed by Rie-

mannian tangent space methods in several datasets [6–9].
Key factors for the success of Riemannian tangent space

methods are that the features, namely covariance matrices,

lie on a Riemannian manifold and the commonly used

geometric metric is invariant to affine transformations [6,10].

The tangent space is a vector space with a Euclidean metric

that locally approximates the Riemannian manifold around a

reference matrix, typically the geometric mean of a dataset.

Consequently, standard linear machine learning techniques

for Euclidean vector spaces can be used in the tangent space.
One limitation of the Riemannian approaches is their lack

of interpretability in terms of contributing brain sources

[9,11]. For component-based methods, there are established

techniques to interpret the model parameters in terms of spa-

tial patterns [12]. In this work, we show that the parameters

of linear regression and classification methods in the Rieman-

nian tangent space can be transformed to interpretable spatial

patterns in the M/EEG channel space in a similar fashion as

for component-based methods. Thereby, the tradeoff between

performance and interpretability can be overcome.
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In the next section, we introduce the underlying generative

model for a regression problem, briefly outline a recently

proposed tangent space regression algorithm [8], followed

by the proposed method to convert the parameters to in-

terpretable patterns. The section ends with a description

of conducted simulations, analyzed datasets, and baseline

methods.

II. MATERIALS AND METHODS

A. Generative model

The M/EEG signals xi(t) are typically modelled as a linear

mixture of sources plus additive noise [1]

xi(t) = Assi(t) + ni(t) (1)

where si(t) ∈ R
Q denotes the source signal time activity of

observation i (epoch, session, subject, etc.) and ni(t) ∈ R
P

the additive noise. The matrix As ∈ R
P×Q contains the Q

source patterns [12].

As in [8], we assume that the brain signals arise from

activity of uncorrelated sources. The noise ni(t) = Anνi(t)
is stationary, uncorrelated with the sources, and spans a sub-

space (An ∈ R
P×P−Q) that is shared across observations.

The generative model can then be written as:

xi(t) = Assi(t) +Anνi(t) = Aηi(t) (2)

A ∈ R
P×P includes the source and noise patterns and is

assumed to be invertible. The vector ηi(t) ∈ R
P is the

concatenation of the latent source and noise signals. A scalar

target signal yi at observation i is then modeled as a function

of the latent sources’ powers:

yi = bT f(pi) + b0 + εi (3)

where pi = E{s2i (t)}t ∈ R
Q contains the sources’ powers

at observation i, f(·) is a known function, b ∈ R
Q a weight

vector, b0 a bias term, and εi ∼ N (0, σ2) noise. Here, we

consider f(·) = log(·) as log-linear relationships are often

encountered in oscillatory brain activity [13].

Given a set of paired observations {(xi(t), yi)i=1,..,N}
our goal is to predict the target signal for unseen data, and

identify the patterns As of the encoding sources.

As in previous works [4,8], we will use the between-

sensor covariance matrices as features. Assuming zero-mean

signals, the covariance matrices can be computed as:

Ci =
1

T
XiX

T
i ∈ R

P×P (4)
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where the columns of the matrix Xi ∈ R
P×T contain T tem-

poral samples. The covariance matrices Ci are in the mani-

fold of positive definite matrices S++
P . If we assume that the

source signals are zero-mean and uncorrelated, their covari-

ance matrix is diagonal E{si(t)sTi (t)}t = diag (pi). If they

are also uncorrelated with the noise, i.e. E{si(t)νT
i (t)}t = 0,

and w.l.o.g. the noise sources are uncorrelated, the sensor

covariance matrices can be expressed as:

Ci = AEiA
T (5)

where Ei = E{ηi(t)η
T
i (t)}t is a diagonal matrix, whose

diagonal elements are pi.

B. Riemannian tangent space regression model

Equipping the manifold S++
P with the geometric metric gives

a Riemannian manifold structure to S++
P . For the generative

model, defined in (1), the Riemannian tangent space em-

bedding of the covariance matrices Ci gives a consistent

estimator for yi, if the function f(·) is the logarithm [8].

The embedding vi is computed as:

vi = projC̄(Ci) = upper
(
log

(
C̄

−1/2
CiC̄

−1/2
))

(6)

where C̄ is the geometric mean [6] of the covariance matrices

{C1, ..,CN}, the logarithm for C ∈ S++
P is log(C) =

Udiag(log(λ1), .., log(λP ))U
T with UTU = I, and the

invertible mapping upper(C) ∈ R
P (P+1)/2 extracts the up-

per triangular elements of a symmetric matrix, with the off-

diagonal elements weighted by the factor
√
2. The weighting

ensures that ||upper(C)||2 = ||C||F . The Euclidean distance

||vk−vl||2 in the tangent space approximates the geometric

distance between Ck and Cl in the vicinity of C̄ [6].

Since the relation between vi and yi is linear [8], any

linear method can be used to fit bc so that a cost function

between ŷi = bT
c vi + b0 and yi is minimized. For M/EEG

datasets the observation (N ) to feature (P (P + 1)/2) ratio

is typically small, requiring regularization.

C. M/EEG channel space model patterns

Given a fitted model with parameters (bc, C̄), the patterns

As of the encoding sources can be identified in a three step

procedure (algorithm 1). First, the tangent space pattern dc

associated to bc is computed according to [12], using Cv =
E{viv

T
i }i. Next, dc is projected back to the covariance

matrix space to obtain Cd ∈ S++
P . Finally, the general

eigenvalue problem for Cd and C̄ is solved.

Under the generative model, the resulting eigenvectors

correspond to the patterns A and the eigenvalues (λj)j=1,..,P
are a function of the unknown, weight vector b (see proof

in the appendix). Specifically, the eigenvalues are:

λj(b) =

{
exp

(
bj/||b||2

)
j ≤ Q

1 otherwise
(7)

where the first Q eigenvalues correspond to the encoding

sources s(t). In practice, the sources with the strongest cou-

pling, i.e., largest |bj |, are found via sorting the eigenvalues

according to the criterion max (λj , 1/λj). The number of

sources with significant coupling (Q) can be identified via a

shuffling procedure.

Algorithm 1: Channel space model patterns

Input : tangent space weight vector bc,

tangent space projection matrix C̄,

tangent space feature covariance matrix Cv

Output: A ∈ R
P×P , λ ∈ R

P

1 dc = Cvbcσ
−2
ŷ with σ2

ŷ = bT
c Cvbc

2 Cd = proj−1
C̄

(dc) = C̄
1/2

exp
(
upper−1 (dc)

)
C̄

1/2

3 A,λ = eigh(Cd, C̄)

D. Model fitting and evaluation

In real M/EEG datasets, the covariance matrices can be

rank-deficient (Ci /∈ S++
P ). In this case, the geometric

metric is not defined [6]. As a remedy, we reduced the

dimensions from P to K via projecting the covariance

matrices to the subspace spanned by the first K principal

components of the covariance matrices’ arithmetic mean

[11]. In this subspace, we computed the geometric mean

and the tangent space features, according to (6). Next, the

features were z-scored. Depending on the dataset, the linear

weight vector bc was estimated either via ridge regression or

penalized logistic regression. The associated cost functions

were the mean absolute error (MAE) between yi and ŷi or

the balanced classification accuracy. The train/test-splitting

scheme depended on the dataset. All parameters (spatial

filters, geometric mean, z-scoring, linear weights) were fitted

to training data. The optimal regularization parameter of

the regression/classification model was determined using an

inner generalized cross-validation (CV) scheme. We consid-

ered 25 candidate values which were log-spaced in the range

[10−5, 103]. In the next sections, we refer to this sequence

of operations as the RIEMANN pipeline.

To put the results into context, we compared the perfor-

mance to SPOC/CSP and a naı̈ve method, denoted DIAG

here. For SPOC, we used the SPOC lambda algorithm [4]

to estimate k components. After spatial filtering with SPOC

or CSP, the logarithm of the covariance matrices’ diagonal

elements were the features. The subsequent steps (z-scoring,

regression/classification) were identical. The DIAG pipeline

was identical to the SPOC/CSP pipeline except for the initial

spatial filtering step. Consequently, the method computed

log-band power features in channel space. We computed pat-

terns for the RIEMANN and SPOC/CSP pipelines according

to section II-C and [12].

E. Experiments

We conducted three experiments to demonstrate the validity

of the approach and analyzed the behavior when the model

assumptions are violated.

1) Simulations: In two regression problem simulations

we investigated the algorithms’ properties in identifying a

single encoding source. First, we varied the power σ2 of the

additive Gaussian noise εi in (3). Second, we introduced a

model violation by making the patterns dependent on the
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Fig. 1. Simulation results. Effect of the target noise power (σ2) on the
mean absolute error (MAE) (a) and the pattern distance (b). The methods are
color-coded. Error bars show the standard error of the mean. a, The MAE
was normalized by the MAE of a dummy method that used the expected
value of the target signal E{yi}i as predictor. c and d, as in a and b for
different pattern noise power (α2) levels.

observation index Ai = A +Ni with (Ni)jk ∼ N (0, α2).
The patterns were computed as A = exp(B) with (B)jk ∼
N (0, 1). The other parameters were identical to [8]. Because

the covariance matrices had full rank, we omitted the PCA

step for the RIEMANN pipeline.

Ten-fold CV was used to fit and evaluate the models. In

addition to the MAE cost function between yi and ŷi, we

computed distances between the true as and its estimate âs.

The pattern distance was defined as 1−|âTs as|/(||âs||·||as||).
A distance of 0 means that the topographies are identical up

a scalar factor γ ∈ R.

2) Cortico-muscular coherence dataset: We analyzed an

MEG dataset that studied cortico-muscular coherence (CMC)

[14]. The publicly available dataset contains recordings of

a single participant during one session. In a trial-based

task, the participant contracted her left hand and exerted a

constant force against a lever. The trials were interleaved

with short breaks. As in [8], we analyzed the dataset in a

continuous setting with the goal to decode the EMG envelope

from the MEG beta band activity of 151 gradiometers. The

considered data and preprocessing steps were similar to

[8]. In a nutshell, we set the single bipolar EMG channel

power as target signal yi, and extracted oracle approximating

shrinkage (OAS) regularized [15] covariance matrices Ci

for beta band ([15, 30]Hz) activity in overlapping windows

(T = 1.5 s, overlap = 1.25 s). We applied 10-fold CV to

evaluate the goodness of fit and used the coefficient of

determination R2 as metric.

3) Multi-session BCI dataset: This dataset was recorded

during a longitudinal (26 sessions, 15 months) BCI study

with a tetraplegic user [16]. The analyzed data contains

EEG signals (32 channels), recorded during a trial-based

paradigm. In each trial, the user performed 1 of 4 distinct

mental tasks and received discrete feedback, provided by

an adaptive BCI. Here, we analyzed the two tasks with the

strongest patterns (feet motor imagery and mental subtrac-

tion). The data preprocessing and trial rejection methods

were identical to [16]. The preprocessed and cleaned data

comprised activity in 4 frequency bands during a 2-s epoch

per trial (1438 trials). For each epoch and band, one OAS

regularized covariance matrix Ci was computed. The tangent

space projection was computed independently for each fre-

quency band. Thereafter, the individual feature vectors were

concatenated and used to predict the target class. The models

were evaluated using a leave-one-session-out CV scheme.

F. Software

The software and analysis scripts are publicly

available https://github.com/rkobler/interpret

lin rts mdls, and are based on the code of [8] and the

python packages Scikit-Learn [17], MNE [18] and

PyRiemann [19].

III. RESULTS AND DISCUSSION

The simulation results are summarized in Fig. 1. As expected,

the regression scores in Fig. 1a,c are similar to the results

reported in [8]. They confirm that the DIAG method is not

a consistent estimator for the generative model considered

here, and that the RIEMANN method is more robust to

pattern noise than SPOC.

The higher robustness to pattern noise of the RIEMANN

method generally translated to lower pattern distances com-

pared to SPOC (Fig. 1d). Regarding the target noise (Fig. 1b),

SPOC was more robust to higher noise levels, as the distance

of the RIEMANN method increased abruptly for σ ≥ 1.

Note that for σ = 1 the noise term in (3) started to dominate

the data term, resulting in poor out-of-sample predictions for

both methods (Fig. 1a).

Fig. 2 summarizes the CMC dataset results for the SPOC

and RIEMANN methods. Both methods achieved similar

quantitative (Fig. 2a) and qualitative (Fig. 2b) decoding accu-

racies. The R2 score peaked at approx. 0.5 (SPOC: 4 com-

ponents, RIEMANN: 42). SPOC reached the peak accuracy

at a lower number of components because its components

are fitted in a supervised fashion.

As the patterns in (Fig. 2c-f) indicate, both methods relied

on similar sources. Considered that the sign is ambiguous,

pendants of the 4 SPOC patterns (Fig. 2d) can be readily

found among the first 8 RIEMANN patterns (Fig. 2f). The

first pattern of both methods indicates that they primarily

decoded the target from eye artifacts. Knowing that the

paradigm had a trial-based structure and there was a strong

target signal change in the breaks (Fig. 2b), eye artifacts

were likely a confounding source. This result underlines the

importance of interpretable models in M/EEG experiments.

The multi-session binary classification dataset results are

depicted in Fig. 3. Using 25 sessions to fit the parameters,

both methods achieved high accuracies in the test session.
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The peak accuracies for the RIEMANN and CSP methods

were 0.93 (18 components per frequency band) and 0.91

(10). The paired difference across sessions was significant

(Fig. 3b).
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Fig. 3. Classifying two mental tasks across sessions. a, Dependence of
the classification score (balanced accuracy) on the number of components
for a leave one session out CV scheme. The methods are color-coded.
Shaded areas show the 95% confidence interval of the mean. b, Boxplots
summarizing the results for the models at the peak in a. The differences
between the methods were significant (two-sided, paired t-test, df = 25,
α = 0.05).

Fig. 4 shows the associated patterns. The sources with

highest eigenvalues (source 1 in the alpha bands) were

similar, indicating that both methods agreed in the most

discriminative source. The patterns also match with the class-

specific, grand-average power modulations, reported in [16].

We observed two differences. First, the RIEMANN patterns

were spatially smoother and easier to attribute to single dipo-

lar sources. Generally, a higher fraction of dipolar patterns

indicates a better source de-mixing quality [20]. Second,

evaluating the eigenvalues in the lower and higher beta

band, there was a drastic drop between the first and second

eigenvalue for the RIEMANN method. This suggests that

the first source contained considerably more discriminative

information than the second one. CSP lacked such a drop,

suggesting that it did not identify this beta band source. In

this longitudinal dataset, the assumption of stationary pat-

terns is certainly violated as the manually mounted electrode

cap location varied across sessions. Because the electrode

locations varied across sessions, both differences could be

attributed to the fact that the RIEMANN method is more

robust to pattern noise (Fig. 1c,d).

IV. CONCLUSION

We proposed a method to interpret the model parameters

of linear regression and classification methods, operating in

Riemannian tangent space. In simulations, we found that the

estimated patterns were robust to noise in the patterns across

observations. These findings were confirmed in a multi-

session EEG dataset. The Riemannian tangent space method

not only significantly improved the classification accuracy

upon CSP but also extracted sources whose patterns were

smoother and more dipolar, which are typical characteris-

tics of sources originating in the brain. In summary, the

proposed approach to compute patterns enables an intuitive

interpretation of state-of-the-art linear Riemannian tangent

space models.
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APPENDIX

Proof that the encoding source patterns As and unknown regres-
sion coefficients b can be recovered from the tangent space weight
vector bc.

We start the proof with expressing the regression model in (3) in
terms of the tangent space features at the geometric mean source
covariance matrix Ē. Since all Ei matrices are diagonal, we have

that their geometric mean Ē = diag(p̄) = diag((
∏N

i=1 pij)
1
N ).

Projecting Ei to the tangent space at Ē yields:

ṽi = projĒ(Ei) = upper(log(Ē
− 1

2EiĒ
− 1

2 ))

= upper(diag((log(pij)− log(p̄j))j=1,..,P )) (A.1)

Starting from (3), assuming w.l.o.g. that y is zero-mean, and setting
f(pij) = log(pij) and b0 = −∑Q

j=1 bj log(p̄j), it follows that

yi = bT f(pi) + b0 + εi = [bT , 0]︸ ︷︷ ︸
b̃
T

ṽi + εi (A.2)

Next, we relate the observed tangent space features vi at C̄ with
ṽi at Ē. Due to the invariance property of the geometric mean
we have C̄ = AĒAT . We additionally introduce the matrix U =

C̄
1
2A−T Ē

− 1
2 so that

UT C̄
− 1

2CiC̄
− 1

2U = Ē
− 1

2EiĒ
− 1

2 (A.3)

holds for all observations i. It is straightforward to show that U is
orthogonal. Consequently, we have:

UT log(C̄
− 1

2CiC̄
− 1

2 )U = log(Ē
− 1

2EiĒ
− 1

2 )

UTupper−1(vi)U = upper−1(ṽi) (A.4)

Now, we can rewrite the dot product between b̃ and ṽ in (A.2) as:

b̃
T
ṽi = tr(upper−1(b̃)upper−1(ṽi))

= tr(upper−1(b̃)UTupper−1(vi)U)

= upper(Uupper−1(b̃)UT )Tvi = bT
c vi (A.5)

where we defined bc as upper(Uupper−1(b̃)UT ) and tr(·)
computes the trace of a matrix. The weights bc linearly relate
the tangent space features vi at C̄ with the target signal yi.
Consequently, with N → ∞ the estimates of a linear estimation
method converge to the true weights bc.

Since the in-product between the pattern and the weight vec-
tor in both tangent spaces is 1 [12], it follows that dc =
upper(Uupper−1(d̃)UT ) where d̃ = b̃/||b̃||2 is the pattern

associated to b̃. If we project dc from the tangent space to the
covariance matrix space, we get:

Cd = proj−1
C̄

(dc) = C̄
1
2 exp(upper−1(dc))C̄

1
2

= C̄
1
2U exp(upper−1(d̃))UT C̄

1
2

= C̄A−T Ē
− 1

2 exp(upper−1(d̃))Ē
− 1

2A−1C̄

= AĒ
1
2 exp(upper−1(d̃))Ē

1
2AT

= Adiag
([

(edj p̄j)j=1,..,Q, (p̄j)j=Q+1,..,P

])
AT

(A.6)

where we used in the last line the fact that upper−1(d̃) is a diagonal

matrix. Computing CdC̄
−1

, we get:

Adiag

([
(e

bj

||b||2 )j=1,..,Q, (1)j=Q+1,..,P

])
A−1

(A.7)

Hence, via eigen decomposition of CdC̄
−1

we can recover the
unknown mixing matrix A and latent weights b. This concludes
the proof.
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