


Abstract— Mobile technologies, including applications 
(apps) and wearable devices, are playing an increasingly 
important role in health monitoring. In particular, apps are 
becoming a critical component of m-health, which promises to 
transform personalized care management, optimize clinical 
outcomes, and improve patient-provider communication. They 
may also play a central role in research, to facilitate rapid and 
inexpensive collection of repeated data, such as momentary 
clinical, physiological, and/or behavioral assessments and 
optimize their sampling. This is particularly important for 
measuring systems/processes with characteristic temporal 
patterns, e.g., circadian rhythms, which need to be adequately 
sampled in order to be accurately estimated from discrete 
measurements. Temporal sampling of these patterns may also 
be critical for elucidating their modulation by pathological 
events. This paper presents a novel app, developed with the 
overarching goal to optimize repeated salivary hormone 
collection in pediatric patients with epilepsy through improved 
patient-investigator communication and enhanced alerts. The 
ultimate goal of the app is to maximize regularity of the data 
collection (up to 8 samples/day for ~4-5 days of hospitalization) 
while minimizing intrusion on patients during clinical 
monitoring. In addition, the app facilitates flexible collection of 
data on stress and seizure symptoms at the time of saliva 
sampling, which can then be correlated with hormone levels 
and physiological changes indicating impending seizures. 

Clinical Relevance— The developed app will optimize 
repeated salivary stress hormone measurements during 
inpatient pediatric epilepsy studies. This optimization can 
significantly improve the estimation accuracy of patient-
specific circadian stress hormone rhythms and their 
modulations by seizures.

I. INTRODUCTION

The rapid expansion of mobile technologies and associated 
applications has dramatically improved almost every aspect 
of everyday life, from simple communication to safety, 
fitness, and digital health. Advances in artificial intelligence 
(AI) and data storage have specifically played a pivotal role 
in the exponential growth of mobile health (m-health) for 
personalized, regular or even continuous monitoring and 
care management. Additional technological advances in 
sensor/hardware development, tracking devices, and 
applications (apps) have facilitated the continuous collection
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of increasingly accurate multi-modal health data. To date, 
there are more than 300,000 health-related apps with a total 
market size of over $30 billion. Almost 30% of people in the
US use them to monitor health, fitness, nutrition, and overall
wellness, and as their primary source of health information. 
This not only allows people to play an active role in their 
health, but also improves symptom and adverse event 
reporting and patient-provider communication.

As mobile phones have become indispensable, their utility 
for data collection and self-reporting has grown across 
fields. In particular, health tracking apps are becoming 
invaluable for monitoring health/conditions. They provide 
instant feedback to individuals and their providers and help 
increase awareness and motivation for the former and 
facilitate diagnosis for the latter [1]. Continuous health 
tracking can enable rapid disease/adverse event detection 
and prompt intervention, which in some cases can be life-
saving [2-3]. 

Phone apps can also help monitor physical and mental health
and facilitate momentary behavioral adjustments in response
to stressors or to prevent risk behaviors, such as substance 
use [4-11]. They can also be used for alerting a struggling 
individual’s support network of a mental health crisis or for 
connecting the individual with trained counselors from the 
National Suicide Prevention Lifeline or 911. Others provide 
motivational messages for behavioral self-regulation, e.g., to
encourage physical activity, healthy eating and mindfulness 
[12-14]. 

Beyond health monitoring, mobile technologies are also 
playing a growing role in clinical and behavioral research. 
Studies involving momentary assessments use apps to 
collect data multiple times per day, thus sampling behavior 
in ecologically valid settings (outside the tightly controlled 
environment of a laboratory). This allows for behavioral 
assessments in realistic settings. In clinical studies that 
require repeated data collection under complex conditions 
(e.g., during patient hospitalizations and/or in intensive care 
units), apps may play a critical role in optimizing data 
collection while minimizing intrusion on patients and 
interference with their clinical care. Thus, next-generation 
clinical/behavioral research protocols will undoubtedly 
integrate these technologies in their experimental setups. 

Research studies that involve measurement of complex 
processes with characteristic temporal patterns (e.g., 
circadian rhythms) in humans can leverage mobile apps for 
optimal sampling. When sparsely sampling these processes 
at discrete time points, the timing of the data collection is 
critical to the estimation of these rhythms. Poorly timed or 
unevenly spaced samples can lead to large estimation errors 
and miss important features of a temporal pattern.

 Here we report the development of a dedicated mobile 
phone app to improve dynamic data collection in clinical 
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pediatric epilepsy research. The development of this app was
inspired by the needs and complexity of a clinical research 
study that aims to assess the impact of stress hormone 
fluctuations and deviations from their normative circadian 
patterns on seizure generation. The study requires repeated 
hormone measurements in saliva during a patient’s 
presurgical evaluation (an inpatient study that spans ~ 5 
days). Sampling is impacted by multiple factors, including 
other clinically indicated studies, such as neuroimaging, that 
may interfere with collection, meals, sleep and/or patients 
forgetting or being unable (e.g., right after seizures) to 
provide specimens. Given that the frequency of collection is 
limited by study costs, the relatively sparse number of daily 
samples (typically ≤8) need to be optimally spaced in order 
to measure physiologically meaningful changes in multiple 
hormone rhythms during each circadian cycle. 

Improving and automating remote communication with 
patients, so that collection is regular and adequately spaced 
and missing data are minimized, may significantly improve 
temporal hormone sampling and allow accurate estimation 
of their circadian patterns and modulations. Furthermore, the
app facilitates collection of additional data (on stress level 
and seizure-related symptoms/auras) at the same time as the 
saliva collection. In turn, this allows the evaluation of 
associations between momentary self-reported symptoms 
and simultaneously measured stress hormone levels. The 
developed app is also flexible in that it can be easily 
expanded to include additional data instruments and 
momentary behavioral/symptom assessments that can be 
communicated to the investigators in real time. 

II.PROCEDURE FOR PAPER SUBMISSION

A. App Framework and Distribution

The app was primarily developed using React Native, a 
Javascript-based programming framework that can be used 
in both Android and IOS platforms. Furthermore, Android 
Studio and Xcode were used for Android-specific and IOS-
specific development and testing, respectively. Android 
users can directly download the Android Package Kit file 
through which the app can be installed, whereas IOS users 
can install it through TestFlight.

B. App Organization and Components

The organization of the app is summarized in Figure 1.

Figure 1: Nested organization of developed app.

B1. AuthProvider                                                                
The app is wrapped in an AuthProvider object that 

manages user authentication. It permits users to sign into or 
out of the app by connecting to MongoDB, a database 
program that stores data as documents. The app utilizes two 
MongoDB services, Atltas and Realm. User documents and 
data are stored on Atlas, the cloud database service. Realm 
allows for immediate data transfer from the mobile device to
the Atlas database, and vice versa. Realm is also used to 
connect to Firebase Cloud Messaging (FCM) to send remote 
push notifications. Given the need to ensure patient privacy 
in human clinical studies, the app verifies users via a custom
function, rather than through email or social media accounts.
The custom function takes in a payload object consisting of 
the username and password entered in the login screen. If 
there is an existing user document (with username and 
password information), the login will be completed. Each 
user (participant or investigator) has a unique ID and 
password. Once a user has been logged in, the app uses the 
AsyncStorage API to store the user ID and category value 
(true if investigator, false otherwise).

B2. Push Notification Controller                                         
The PushNotificationController class is a child of the 

AuthProvider. When this component is created, it generates 
the Android notification channels and configures Push 
Notifications for Android and IOS. Additionally, it returns a 
NavigationContainer object that holds the various screens of 
the app. The PushNotificationController class has three state 
variables: alarmTime, accessTime, and subsWaiting. 
alarmTime is a Date object that keeps track of time (and 
onset of data collection) in order to trigger each subsequent 
alarm; accessTime is a Date object representing the earliest 
time a subject may start submitting data. alarmTime and 
accessTime are passed as properties to the Participant Home 
Screen class; subsWaiting is used on the investigator side to 
monitor which participants are ready for collection. This 
information is represented as an object array with each entry 
containing the participant ID and a timestamp. This value is 
passed to the Investigator Home Screen class. 

B3. Navigator
The Navigator contains the app screens for participants 

and investigators, which are summarized in Figure 2.

Figure 2: Organization/content of the app screens.
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Login: The first screen in the navigation stack is the login 
page, the first component loaded on initial app startup. A 
splash screen appears while the login component checks if 
there is a user already logged in. If the app was closed by the
user, it will attempt to restore the previous state upon re-
opening. To do so, it first searches for an existing user ID in 
the AsyncStorage system. If there is no existing user, then 
the login screen appears. If there is an existing value for the 
user ID key, it gets the user category key value. If this value 
is true, it will redirect to the Investigator home screen, 
otherwise the app will show the Participant home screen. 
Before redirecting, it will update the state with any other 
existing data stored in AsyncStorage.

Investigator Home Screen Class: When an investigator logs 
into the app, they are subscribed to the FCM topic 
designated for participant-to-investigator communication. 
After a participant submits stress and seizure symptom data 
to the Atlas database, a function is triggered to create a 
remote notification sent through FCM and alert the 
investigators that the participant is ready for collection. In 
addition, their ID and timestamp are added to the 
subsWaiting array and the investigator’s home screen is 
updated with this new information. In studies that require 
laboratory data to be promptly stored (in this case saliva 
specimens must be collected and rapidly placed in a 
refrigerator), it is crucial for investigators not to miss these 
notifications. Therefore, after receipt of the initial one, they 
must click a confirmation button on their home screen. If the
app does not receive the confirmation, up to three more local
notifications (sent from the app to investigator) are sent as 
reminders. When confirmation is received, the subsWaiting 
array is set to empty and notifications are canceled. 

Participant Home Screen Class: The Participant Home 
Screen uses the accessTime property to control the use of the
‘Continue collection’ button and alarmTime to set the time 
for the next alarm. When this button is pressed, it compares 
the current time to accessTime. If the current time is before 
access time, a message appears stating it is not yet time for 
the next collection. Otherwise, it compares the day of 
alarmTime with the current day. If the last stored alarmTime
was from the previous day, it resets the collection schedule. 
Since it is the first collection of the day, the next alarm will 
be set for 30 minutes. If the last alarm is from the same day, 
the alarm will be set for 2 hours. The alarm is sent as a local 
notification which gives the participant the option to begin 
collection, snooze for 15 minutes, or stop collection. Three 
more notifications are scheduled several minutes apart as 
reminders in the event that the subject misses the initial 
notification and does not respond. Any response given will 
cancel the remaining reminders. 

During inpatient clinical monitoring studies and/or a 
presurgical, epilepsy patients often undergo multiple 
additional evaluations. These typically include multiple 
neuroimaging studies (MRI, PET, interictal and ictal 
SPECT), which may interfere with research studies that 
collect repeated data. In addition, given the specific 
limitations of saliva collection (patients cannot eat at least 60

min prior to collection) patients may need additional 
flexibility in the timing of specimens without severely 
impacting sampling (e.g., missing collections). Thus, 
although sampling (and associated notifications) are timed at
120-minute intervals, participants are able to enter the data 
and provide a specimen as early as 90 min after the prior 
collection. This is another way to minimize missed 
assessmentpoints and reduce potential rhythm estimation 
errors. Finally, if the participant wants to stop collection for 
the day, they can click the Stop Collection button. This sets 
alarmTime to null, removes the alarmTime key in 
AsyncStorage, and cancels all scheduled local notifications. 
The logout button also cancels all notifications, clears all 
keys in AsyncStorage and then navigates to the login screen.

Data collected through the app: Once participants indicate 
their ability to provide a specimen, participants are required 
to answer a brief, two-question survey on their stress level 
and seizures symptoms. The first question asks participants 
to rate their stress level on a Likert-type (1-5) scale, with 1= 
none, 2 = mild, 3 = moderate, 4 = high and 5 = extreme 
stress. The second question asks them to report if they think 
they are experiencing an aura, or any seizure symptoms. 
These data are stored as an object containing the user id, 
their responses, and a timestamp. This object gets sent to 
Mongodb to be stored in the Atlas database. Mongodb has 
built-in security features which encrypt all data transferred 
to and from the app using Transport Layer Security [15].

III. APP-BASED HORMONE RHYTHM OPTIMIZATION

Stress hormones, including cortisol and norepinephrine, 
have characteristic circadian rhythms that can be sampled 
via repeated measurements in saliva. These rhythms have 
somewhat different morphological characteristics and are 
out of phase with each other. Their modulation by abnormal 
events, such as seizures, remain elusive. Therefore, in order 
to both estimate normative patterns and pathological 
changes, frequent sampling is necessary. A realistic optimal 
number of 8 samples were selected in the design of the study
that inspired the app development. However, in practice this 
number is rarely attainable given previously described 
interfering factors. For some patients, collection of 6 daily 
saliva specimens is reasonable but for others sampling is 
sparser (4-5 specimens/day). 

To demonstrate the critical dependence of hormone rhythms 
sampling on the number, timing and spacing of specimen 
collection, and thus highlight the potentially critical role of 
the developed app in maintaining the regularity of hormone 
sampling, we conducted the following simulation. The 
theoretical cortical and norepinephrine circadian patterns in 
adults were sampled using 4, 5 or 6 data points, pseudo- 
randomly spaced from 6 am to 10 pm (typical span of data 
collection during the clinical study). Sampling was not 
entirely at random given that in the clinical study we control 
the minimum inter-sample interval to be no less than 90 min 
and consistently sample the first 2 morning samples ~30 min
apart in order to capture the characteristic cortisol peak 
shortly after a participant wakes up. During each simulation 
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(100 draws per set of data points, i.e., a total of 300 runs) the
corresponding cortisol and norepinephrine circadian patterns
were estimated by fitting a polynomial model to the data 
using the Smoothing Spline method. For each model, the 
root mean squared error (RMSE) between the theoretical and
estimated rhythms was calculated, separately for cortisol and
norepinephrine. The statistics of the RMSE as a function of 
number of samples are summarized in Table 1. Examples of 
estimated rhythms (superimposed on their theoretical 
counterparts) are shown in Figure 3. 

TABLE I. SAMPLING-RELATED ESTIMATION ERRORS

Number of
samples

Root Mean Squared Error (RMSE)

Median over simulations Min Max

Cortisol

4 0.11 0.03 1.11

5 0.08 0.01 0.62

6 0.04 0.01 0.39

Norepinephrine

4 2.37 0.73 1.70

5 1.69 0.44 1.76

6 1.27 0.37 0.87

Table 1: Statistics of RMSE from 100 simulations for 4-, 5- and 6-point 
sampling, respectively, of cortisol and norepinephrine circadian rhythms. 

Figure 3: Theoretical (solid lines), optimally sampled (8 time points) and 
sub-optimally sampled cortisol and norepinephrine (NE) rhythms based on 
different distributions of 4, 5 and 6 samples from 06:00 to 22:00. 

Depending on the sample sparsity and temporal distribution 
(spacing), estimated hormone rhythms deviated significantly
from their theoretical values, highlighting the need for 
regularly spaced samples, particularly in the case of 4-5 
samples per day. In turn, this suggests that the developed 
app may play a significant role in improving the estimation 
of temporal hormone patterns under the constraints of a 
clinical research study in an inpatient setting.

IV. CONCLUSION

We have developed a new mobile phone app that aims to 
optimize the relatively sparse daily collection of saliva 
specimens in a complex population of pediatric epilepsy 
patients during their inpatient (multi-day) presurgical 
evaluation. During a clinical research study that aims to 
elucidate the role of stress hormones (measured in saliva) as 
seizure triggers, the app facilitates the communication 
between study participants and investigators, optimizes the 
regularity of data collection via timed alerts to participants, 
and minimizes missing data, in order to maximize the 
accuracy of estimated temporal hormone patterns. Beyond 
timing, the app also collects momentary data on stress level 
and seizure symptoms, which can then be correlated with 
hormonal fluctuations and measures from other modalities. 
These simultaneously collected self-reported data can then 
be integrated with electrophysiological data 
(electroencephalograms and electrocardiograms 
continuously collected during inpatient monitoring) to 
improve both the field’s fundamental understanding of 
seizure precipitants and seizure prediction.  

Beyond the clinical study that inspired its development, the 
app can flexibly incorporate multiple surveys and may thus 
become a valuable research tool for rapid collection of 
momentary data across domains (behavioral, mental health, 
activity, and wellness), sampling processes with complex 
temporal patterns, real-time data sharing with investigators, 
and even ecologically-valid momentary interventions.    
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