
  

   Abstract— Human activity recognition has many potential  

applications. In an aged care facility, it is crucial to monitor 

elderly patients and assist them in the case of falls or other 

needs. Wearable devices can be used for such a purpose. 

However, most of them have been proven to be obtrusive, and 

patients reluctate or forget to wear them. In this study, we used 

infrared technology to recognize certain human activities 

including sitting, standing, walking, laying in bed, laying down, 

and falling. We evaluated a system consisting of two 24×32 

thermal array sensors. One infrared sensor was installed on side 

and another one was installed on the ceiling of an experimental 

room capturing the same scene. We chose side and overhead 

mounts to compare the performance of classifiers. We used our 

prototypes to collect data from healthy young volunteers while 

performing eight different scenarios. After that, we converted 

data coming from the sensors into images and applied a 

supervised deep learning approach. The scene was captured by 

a visible camera and the video from the visible camera was used 

as the ground truth. The deep learning network consisted of a 

convolutional neural network which automatically extracted 

features from infrared images. Overall average F1-score of all 

classes for the side mount was 0.9044 and for the overhead 

mount was 0.8893. Overall average accuracy of all classes for 

the side mount was 96.65% and for the overhead mount was 

95.77%. Our results suggested that our infrared-based method 

not only could unobtrusively recognize human activities but also 

was reasonably accurate. 

I. INTRODUCTION 

The recognition and classification of human activities 

have many applications such as monitoring elderly people in 

an aged care facility. Wearable devices can be used for such 

an application [1]. A survey on sensor-based activity 

recognition were presented in [2]. However, studies have 

shown that residents generally do not want or may forget to 

wear wearable devices [3]. Technologies like visible 

cameras, millimeter wave (mmWave) radar, and light 
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detection and ranging (LiDAR) can be used for recognizing 

and monitoring human activities unobtrusively [4], [5]. 

However, these technologies are either expensive or privacy 

unfriendly. For instance, a visible camera is not privacy 

friendly and LiDAR is expensive. mmWave radar is 

affordable, but it generates three-dimensional point cloud 

data which are computationally more expensive. In this 

study, a low-resolution infrared sensor is used to classify 

human activities including sitting, standing, walking, laying 

in bed, laying down, and falling. Low-resolution infrared 

cameras are privacy friendly and unobtrusive. They produce 

a matrix showing a body heat signature that can be used by 

machine learning (ML) techniques to recognize human 

activities. There are two main ML approaches for human 

activity recognition, namely frame-based and flow-based. 

While in the former approach, only one frame is used [6], in 

the latter one, a sequence of frames is analyzed [7]. In this 

study, a frame-based approach was used since it is less 

computationally expensive. As a result, it can be executed in 

embedded systems. The aim of this study is to present a 

novel deep learning-based method for human activity 

recognition using low-resolution, low-cost infrared sensors, 

and further investigate the effect of sensor position on 

performance of the proposed convolutional neural network 

(CNN)-based model. The contributions of this study are: 1) 

providing two datasets by experimenting eight different 

scenarios on healthy young volunteers using our prototypes, 

2) presenting a human activity recognition method using 

infrared sensors and a CNN model. 

II. RELATED WORK 

Two low-resolution (4 by 16 pixels) MLX90621 thermal 

sensor were used in [8]. The collected data included 2083 

and 1190 samples achieved from two and three subjects, 

respectively. Their system could classify four static activities 

namely sitting, standing, sitting on ground, and laying on 

ground. Using five different ML algorithms, the best 

achieved classification accuracy was 97.5%. A low-

resolution (64 by 64 pixels) thermal sensor with ceiling 

position was used in [9] for recognition of 7 human actions: 

slow walking, fast walking, restlessness, sitting, standing, 

turning on a seat, and no action. The restlessness action 

covered all small movements around a workstation such as 

answering the phone, moving objects, and typing. In total, 
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the dataset consisted of 700 samples. Using a 10-fold cross 

validation method the F1-score achieved by their proposed 

model was 83%.  In [10] three set of low-resolution thermal 

sensors (8 by 8 pixels) were used to capture human postures 

from x, y, and z-axes. Three thermal images were 

concatenated and fed to a CNN to recognize eight human 

postures namely stand, hand raise, akimbo, open wide arms, 

squat, toe touch, crawl, and lie. A total of 15063 samples 

were collected from four participants. Using a 10-fold cross 

validation method an F1-score of 99.81% was obtained. A 

high-resolution (320 by 240 pixels) infrared camera was used 

in [11]. The collected data consisted of 5278 samples which 

were split as 2844 for training, 1255 for validation, and 1179 

for test. The classes included: walking, standing, sitting on 

chair, sitting on chair with desk in front, fallen on the desk in 

front, and fallen/lying on ground. The images were resized 

before entering a CCN model and the best results were 

achieved with an accuracy of 87.44% for size 32 by 32. 

Plantar inclinometer sensor was used in [12]. They detected 

falls of 5 subjects in forward, backward, left, and right falls 

and obtained the average detection rate of 85.4%.  

However, no existing work attempted to classify laying in 

bed as a distinct action. This is of importance especially in 

an aged care facility, as it is required to distinguish whether 

the elderly person lies in bed or lies down on the floor (fall). 

In this study, along with other human activities, we 

considered a distinct category namely laying in bed, to make 

it possible to distinguish it from laying down on the floor. 

III. EXPERIMENTAL SYSTEM 

This section explains the experimental system including 

hardware system, position of installation, methodology, data 

collection, data pre-processing, and the deep learning model.  

A. Hardware system 

The components are EVB90640-41 board and 

MLX90640ESF-BAA-000-TU infrared sensor from Melexis 

company [13], [14]. The system can measure temperature 

and perform some pre-processing. It can send the measured 

temperatures in a csv file format to a computer. It can host 

infrared sensors with narrow and wide field of view, 

respectively. In this research, we used the wide one (110 

degrees in azimuth and 75 degrees in elevation) which had 

accuracy of ± 1 Celsius (oC). Fig. 1 shows the hardware. We 

set frame per second to 1, emissivity to 1, measurement 

pattern as chess and then logged the data. 

B. Position of installation 

We designed and manufactured two prototypes. They were 

manufactured in Polylactic Acid (PLA) material using rapid 

prototyping (Ultimaker Cura 3D printer). The prototypes 

were installed in a room of 5×5×3 m (length, depth, height) 

with ambient temperature from 20 to 22 oC on the side and 

the overhead. For the side mount, the sensor was elevated 2 

m from the floor, tilted approximately 10 degrees down for 

better coverage and installed in the middle of the length of 

the room. For the overhead mount, the sensor was installed 

in the center of the room at 3 m elevation facing floor with 

no tilt. Fig. 2 shows the prototypes. 

C. Methodology 

The scene was simultaneously captured by the two 

infrared sensors and a visible camera. The video from the 

visible camera was used as the ground truth. The data from 

the sensors were sent to a computer in a csv format. In the 

csv file each row consisted of a timestamp and measured 

temperature of all 768 pixels representing a frame. Then 

each frame was converted into a thermal image of size 24 by 

32. After performing some pre-processing, the images were 

split to train and validation sets and fed into a CNN model.  

The experimental procedures involving human subjects 

described in this paper were approved by Human Research 

Ethics and Clinical Trials (HREC) Governance of the 

University of New South Wales with number HC191001. 

D. Data collection 

We defined eight different scenarios each between one 

and two minutes long and healthy young volunteers 

performed them. In total, 80 different experiments were 

performed. Table Ⅰ shows the scenarios and involved 

activities. Ten healthy young volunteers (seven males and 

three females, height: 179 ± 9.4 cm, weight: 80.1 ± 17 kg, 

age: 26.5 ± 4.2 years) were recruited in the human trials of 

simulated falls and simulated activity of daily livings. 

Figure 1. Hardware of EVB90640-41. 

Figure 2. Prototypes. a) the sensor is installed on a platform for side mount, 

b) the sensor is installed on a two-story platform for overhead mount. 

Figure 3. Visualizing a frame while a participant is laying in bed. a) shows 

the scene recorded by a visible camera, b) shows the thermal image from 

the overhead sensor, c) shows the thermal image from the side sensor. 
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We defined seven classes namely stand, walking, sitting, 

sitting in bed (SitBed), falling, laying in bed (LayBed), 

laying on floor (LayFloor). We then merged falling with 

laying on floor since both demand attention and show 

abnormal activities, and stand with walking, since both are 

similar in frame-based approach. By setting one frame per 

second, we collected 5117 and 5126 samples from the side 

and overhead sensors, respectively. The two number of 

samples differed because the sensors did not get samples 

exactly every 1 second resulting in having occasionally 

missed data. The obtained dataset is listed in Table Ⅱ. 

E. Data pre-processing 

Fig. 3 visualizes a frame in which a participant is laying in 

bed with the corresponding thermal images from the side and 

overhead infrared sensors. To clean background noise such 

as ceiling lighting, heater, laptop, or kettle, for every 

participant data a time-averaged algorithm was performed on 

previous frames that were labelled as background and this 

average image was subtracted from other frames. The length 

of the averaging window was from the start of the previous 

experiment up to the current frame. The method was 

computationally cheap and sufficient for our purpose. 

F. Deep learning model architecture 

The architecture of the model consisted of an input layer, 

following three convolutional layers, two maxpooling layers 

between every two convolutional layers, one fully connected 

layer, and a softmax layer. The kernel size was 3×3 for all 

three convolutional layers. ReLu activation function was 

used for all the convolutional layers and fully connected 

layer. Stride was one by one for convolutional layers and two 

by two for maxpooling layers. Hyper parameters were set as 

optimization algorithm: adam, initial learn rate: 0.001, epoch 

numbers: 10, batch size: 128.  A laptop with NVIDIA 

Quadro T2000 GPU was used for performing deep learning. 

The training and validation took 40 minutes over 10 epochs. 

Fig. 4 shows the architecture of the CNN model. 

IV. RESULTS  

We used MATLAB software to perform supervised deep 

learning on the data. To validate the results, we used leave-

one-subject-out method. Tables Ⅲ and Ⅳ show confusion 

matrices for the side and overhead mounts. We evaluated the 

model performance with four measures namely accuracy, 

recall, precision, and F1-score. Tables Ⅴ and Ⅵ show the 

evaluation matrices. Overall average accuracy of all classes 

for the side mount was 96.65% and for the overhead was 

95.77%. Overall average recall of all classes for the side 

mount was 0.9060 and for the overhead was 0.8931. Overall 

average precision of all classes for the side mount was 

0.9029 and for the overhead was 0.8856. Overall average 

F1-score of all classes for the side mount was 0.9044 and for 

the overhead was 0.8893. For the side mount the merged 

falling and laying on floor, and laying in bed activities had 

the highest F1-score with 0.9249 and 0.9241, respectively. 

For the overhead mount laying in bed activity had the highest 

F1-score with 0.9128. For both mounts, sitting in bed activity 

was recognized with the lowest F1-score. For the side mount, 

laying in bed along with merged falling and laying down 

activities and for the overhead mount, laying in bed were 

recognized with the highest F1-score. 

Figure 4. The architecture of the CNN model. 

TABLE I.  SCENARIOS AND INVOLVED ACTIVITIES. 

Number Scenario description  

1 Walking and randomly stand 

2 Sitting on chairs 

3 Falling forward from standing position 

4 Falling backward from standing position 

5 Falling laterally from standing position 

6 Laying in bed 

7 Sitting in bed and falling forward while standing up  

8 Falling from bed while laying 

TABLE II.  THE DATASET FOR ACTIVITY RECOGNITION. 

Class Side  Overhead 

Falling+LayFloor 1701 1699 

LayBed 721 726 

Sit 677 679 

SitBed 289 292 

Stand+Walking 1729 1730 

TABLE III.  CONFUSION MATRIX FOR THE SIDE MOUNT. 

True /Predicted 

Class 

Falling+

LayFloor 
LayBed Sit 

SitB

ed 

Stand+

Walking 

Falling+LayFloor 160 1 2 1 11 

LayBed 2 67 0 2 1 

Sit 2 2 62 0 3 

SitBed 1 1 1 24 1 

Stand+Walking 6 2 2 2 158 

TABLE IV.  CONFUSION MATRIX FOR THE OVERHEAD MOUNT. 

True /Predicted 

Class 

Falling+

LayFloor 
LayBed Sit 

SitB

ed 

Stand+

Walking 

Falling+LayFloor 152 2 2 2 15 

LayBed 1 68 1 1 2 

Sit 1 2 63 1 3 

SitBed 1 1 1 24 1 

Stand+Walking 11 3 2 1 150 

TABLE V.  EVALUATION MATRIX FOR THE SIDE MOUNT. 

True /Predicted 

Class 
Accuracy Recall Precision F1-score 

Falling+LayFloor 0.9494 0.9143 0.9357 0.9249 

LayBed 0.9786 0.9306 0.9178 0.9241 

Sit 0.9767 0.8986 0.9254 0.9118 

SitBed 0.9825 0.8571 0.8276 0.8421 

Stand+Walking 0.9455 0.9294 0.9080 0.9186 

Average value 0.9665 0.9060 0.9029 0.9044 

TABLE VI.  EVALUATION MATRIX FOR THE OVERHEAD MOUNT. 

True /Predicted 

Class 
Accuracy Recall Precision F1-score 

Falling+LayFloor 0.9315 0.8786 0.9157 0.8968 

LayBed 0.9746 0.9315 0.8947 0.9128 

Sit 0.9746 0.9000 0.9130 0.9065 

SitBed 0.9824 0.8571 0.8276 0.8421 

Stand+Walking 0.9256 0.8982 0.8772 0.8876 

Average value 0.9577 0.8931 0.8856 0.8893 
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V. DISCUSSION 

Based on the measures, the proposed CNN model slightly 

performed better for the side mount. However, the difference 

between them was quite small. Unlike [8] that considered 

four static activities, in this study we omitted sitting on 

ground activity and instead added walking, falling, laying on 

floor, laying in bed, and sitting in bed activities. This is 

because we assumed falling and laying on floor were more 

critical and needed more attention than sitting on ground. In 

[10] falling, laying down, and laying in bed activities were 

not investigated. For monitoring elderly people especially in 

an aged care facility, it is crucial to know when they are in 

bed and summon help in case of laying down or falling. 

Falling and laying on floor were investigated in [11] in which 

an accuracy of 87.44% was achieved by a CNN method. 

Using our proposed CNN model, overall average accuracy of 

all classes for the side was 96.65% and for the overhead was 

95.77%. In addition, we calculated recall, precision, and F1-

score so that the performance of the model could be seen 

class-wise while in [11] only accuracy was calculated. One 

advantage of the proposed method was it remained simple to 

implement and required few resources (time and space). 

Therefore, it could be useful for real-time application. 

Furthermore, we investigated the impact of the sensor 

position on the performance of our proposed CNN model. 

Moreover, the proposed system was low cost and could be 

installed in aged care facilities as nurse call systems.  

VI. CONCLUSION 

In this study, we demonstrated how low-resolution thermal 

sensor (24×32 thermal array) could be used to recognize 

human activities. We collected data from ten healthy young 

volunteers experimenting eight different scenarios and 

performing deep learning. Overall average F1-score of all 

classes for the side mount was 0.9044 and for the overhead 

was 0.8893. Overall average accuracy of all classes for the 

side mount was 96.65% and for the overhead was 95.77%. 

Our results suggested that our infrared-based method not 

only could unobtrusively recognize human activities but also 

was reasonably accurate. For future research we intend to 

combine the data from two sensors (stereo analysis). We also 

intend to compare deep learning with manually extracted 

features approach. Future work in this area could extend to 

the application of this technology to the cases where there is 

more than one resident. Also, higher frame rates or sensors 

with more resolution could be used, and rather than the 

devised frame-based classification method a sequence 

classification method could be developed. The primary 

limitation of our method is the need to perform offline 

training of the classifier. Therefore, further research could be 

performing online training or even using unsupervised 

approach. Another limitation is having falling and laying on 

floor classes merged which we are working to resolve. 
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