
Shape Reconstruction for Abdominal Organs based on a Graph
Convolutional Network

Zijie Wang1, Student Member, IEEE, Megumi Nakao1, Member, IEEE,
Mitsuhiro Nakamura2, and Tetsuya Matsuda1, Member, IEEE

Abstract— Computed tomography and magnetic resonance
imaging produce high-resolution images; however, during
surgery or radiotherapy, only low-resolution cone-beam CT and
low-dimensional X-ray images can be obtained. Furthermore,
because the duodenum and stomach are filled with air, even
in high-resolution CT images, it is hard to accurately segment
their contours. In this paper, we propose a method that is based
on a graph convolutional network (GCN) to reconstruct organs
that are hard to detect in medical images. The method uses
surrounding detectable-organ features to determine the shape
and location of the target organ and learns mesh deformation
parameters, which are applied to a target organ template. The
role of the template is to establish an initial topological structure
for the target organ. We conducted experiments with both single
and multiple organ meshes to verify the performance of our
proposed method.

I. INTRODUCTION

Three-dimensional (3D) medical imaging technologies,
such as computed tomography (CT) and magnetic resonance
imaging (MRI), play a role in visual observation of human
structure for diagnosis, surgery, and radiotherapy. However,
patients may undergo multiple treatments over the course of
several weeks, during which time changes to their abdominal
anatomy may occur. Because CT equipment is not portable,
and repeated imaging increases patient radiation exposure,
CT images are only obtained for initial planning [1]. Daily
images can only be obtained using low-dimensional X-ray
or low-resolution cone-beam CT (CBCT), but some organs,
such as the stomach, duodenum, and pancreas, cannot be
clearly resolved because missing values or artifacts often ap-
pear in CBCT images [2]. Furthermore, because the stomach
and duodenum are filled with air, images of these organs
are not very clear, even in CT. Organ shape and location
vary from person to person [3], further complicating organ
detection. In order to obtain a clear image of internal organs
from the CBCT image, an experienced doctor needs to
spend a lot of time to manually define. If this work can be
performed by machines, it could greatly reduce the workload
of doctors. Some researchers have proposed methods to
reconstruct an organ’s 3D shape from a single image [4]
[5] [6] For example, X-ray2Shape reconstructs the 3D shape
of an organ from a single-view two-dimensional (2D) X-
ray [5]; however, in 2D X-rays, it is not easy to segment
the stomach and the duodenum. Nakao et al. [2] suggest
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Fig. 1. The relative positions of the stomach, duodenum, liver, and kidneys:
CT slice image with blurred outline of stomach and duodenum and original
mesh which was generated on the basis of CT images

reconstructing organs that have poorly defined outlines using
the contours of surrounding organs that are easily segmented.
The surrounding organs of the stomach and duodenum are
shown in Fig. 1. The outlines of the liver and kidneys are
clearly visible in CT images. Though Nakao et al. proposed
a method using multiorgan features to localize pancreatic
cancer, it was a kernel-based method that mainly focused on
the intrapatient deformations caused by respiratory motion.
Organ shape reconstruction from interpatient data remains
challenging. The purpose of our study was to develop a
method based on a graph convolutional network (GCN) [7]
to reconstruct the 3D shape of an undetectable organ from
a patient’s more easily detectable organs. GCN has mainly
been used for classification tasks in non-Euclidean space [8].
Herein, we extend the application of GCN to the processing
of mesh data to calculate the deformation from a target
organ template, derived from a 3D-CT dataset, to the unique
shape of the organ using the patient’s 3D-CBCT data of
surrounding easily detectable organs.

II. METHODS

A. Dataset and Processing

The dataset comprised 3D-CT images from 124 patients
and 10-phase 4D-CT from 35 patients who underwent
intensity-modulated radiotherapy for pancreatic cancer at
Kyoto University Hospital [3]. This study was performed in
accordance with the Declaration of Helsinki. In each image,
the 3D contours of the stomach, duodenum, and pancreas
had been manually defined by board-certified radiation on-
cologists. The original mesh data were generated on the basis
of these 3D contours. Deformable mesh registration [2] was
applied to obtain meshes with point-to-point correspondence.
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Fig. 2. Framework architecture. The organ template is derived from the mean shape (from a multiple patient dataset) of the duodenum, and the input is
a set of features of the patient’s surrounding organs (liver, left kidney, and right kidney). The GCN transforms the template, and the output is the patient’s
duodenum.

The liver model comprised 500 vertices and 996 faces, the
right kidney and duodenum model comprised 400 vertices
and 796 faces. Using the same number of vertices for each
patient’s data in the dataset made it possible to calculate a
mean target organ shape. We randomly selected data from
100 patients for the interpatient training dataset and used the
remaining data (from 24 patients) for the interpatient test
dataset. For the intrapatient experiments, we randomly se-
lected 300 images for the training dataset, and the remaining
50 images were used as the test dataset.

B. Duodenum-targeted GCN Framework

The template is the mean shape of target organ. The
framework (Fig. 2, with the duodenum as the target organ)
uses the features of organs that surround the target organ
that are easily detected (liver, right kidney, and left kidney)
as input. The network learns how to deform the mean shape
of duodenum according to the unique features of the patient’s
liver, right kidney, and left kidney outlines. The output is a
reconstruction of the patient’s target organ. In this section,
to facilitate description of the network, we use the example
in which the duodenum is the target organ and the liver is
the input. For the template, we calculated the mean shape
of the duodenum from the dataset. The GCN module uses
deep learning to obtain features in non-Euclidean space. Our
mesh model is a graph G(V, E), where V is the set of nodes
and E is the set of edges. The mesh is deformed by updating
the coordinates of vertices. In our experiments, the GCN
network contained 10 graph convolutional layers, which can
be defined as

X(l+1) = σ(D̂−
1
2 (A+ I)D̂−

1
2X(l)W (l)), (1)

where X(l) is the feature representing the vertices before
convolution, X(l+1) is the feature representing the vertices
after convolution, A ∈ Rn×n is the adjacency matrix, I ∈
Rn×n is an identity matrix, D̂ ∈ Rn×n is the degree matrix
of A+I , n is the total number of vertices, W is the trainable
weight, and σ is the activation function. To combine the

duodenum template and liver input feature, we preprocess
the input data as

X1 =

 v1 u1 . . . u500
...

...
. . .

...
v400 u1 . . . u500

 , (2)

where v1 is the first coordinate of the duodenum template,
v400 is the 400th coordinate of the duodenum template, u1
is the first coordinate of the liver input feature, u500 is the
500th coordinate of the liver input feature, and 400 and 500
represent the number of vertices of the duodenum template
and liver input, respectively. When the input feature uses
both the liver and right kidney, we preprocess the input data
as

X2 =

X1

w1 . . . w400

...
. . .

...
w1 . . . w400

 , (3)

where X1 is the input matrix from (2), w1 is the first
coordinate of the right kidney input, w400 is the 400th
coordinate of input right kidney, and 400 represents the
number of vertices of the input.

C. Loss Function

To generate accurate prediction results, we used three
loss functions: positional loss, discrete Laplacian loss [2],
and translation loss. Positional loss is used to minimize the
distance between corresponding predicted shape and ground
truth shape vertices and is defined as

Lpos =
1

n

n∑
i=0

‖vi − v̂i‖22, (4)

where n is the number of vertices, vi represents the ground
truth vertices, and v̂i represents the predicted shape vertices.
Equation (4) defines the function that moves the vertices
of the template (generalized mean shape of the duodenum
shape) to the corresponding positions of the ground truth
shape (unique characteristics of the patient’s duodenum
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based on those of the surrounding organs). The function
causes the overall shape to stretch, translate, rotate, and twist,
which results in the model shape having a rough surface.

To maintain a smooth surface, we used a discrete Lapla-
cian loss function. The discrete Laplacian is defined below
for vertex vi,

L(vi) =
1

N(vi)

∑
j∈N(vi)

(vi − vj) (5)

where N(vi) is the number of adjacent vertices of one
ring connected by vertex vi and the edge, and vj is the
neighboring vertex of vi; therefore, the discrete Laplacian
loss function is

Llaplacian =
1

n

n∑
i=0

‖L(vi)− L(v̂i)‖22, (6)

where L(vi) is the discrete Laplacian, as defined in (5), of
the template, and L(v̂) is the discrete Laplacian of ground
truth. The Laplacian loss function restricts the deformation
permitted by the positional loss function. To control the
predicted location of the organ (i.e., where the duodenum
will be located with respect to the surrounding organs such
as the liver and right kidney), we used a translation loss
function based on the center of gravity of the mesh structure:

Ltrans = ‖G(V)−G(V̂)‖22 (7)

where G(V) =
∑n

i=1 vi/n is the center of gravity before
deformation and G(v̂i) is the center of gravity after defor-
mation. The total loss is the weighted sum of the three loss
functions

Ltotal = Lpos + λlaplacianLlaplacian + λtransLtrans (8)

III. EXPERIMENTS

A. Performance Evaluation

We conducted three experiments. Experiments 1 and 2
were interpatient experiments, and Experiment 3 was an
intrapatient experiment. Experiments 1 and 3 used only the
liver as input, whereas Experiment 2 used both the liver and
right kidney as input. All experiments used the duodenum
as the target organ. The framework was implemented in
TensorFlow-GPU, with a single NVIDIA Geforce RTX 2070
GPU. The network was trained using an Adam optimizer
with 2×10−4 learning rate and 5×10−6 weight decay. Given
that there was a limited number of samples, the batch size
was set to 1. The total loss converged at approximately 4500
epochs; therefore, we set the number of training epochs to
5000. Training in Experiments 1, 2, and 3 lasted 14 hours, 32
hours, and 61 hours, respectively. We set the hyperparameters
λlaplacian = 1 and λtrans = 1 to balance the three loss
functions, and we used Euclidean distance

DEuclidean =
1

n

n∑
i=0

√
(vi − v̂i)2, (9)

(a)

(b)

Fig. 3. Euclidean distance error. (a) interpatient test set: Experiment 1
final, Experiment 2 final, and initial template; (b) intrapatient image test
set: Experiment 3 final and initial template.

TABLE I
PERFORMANCE RESULTS FOR EXPERIMENTS 1 AND 2

Initial Experiment 1 Experiment 2

ED1(mean) [mm] 45.86 22.29 20.98
ED1(min) [mm] 16.35 12.55 11.93
MD2(mean) [mm] 23.40 9.35 8.52
MD2(min) [mm] 8.29 5.81 5.15
1 Euclidean distance (ED)
2 Mean distance (MD)

where n is the number of vertices, vi represents ground
truth vertices, and v̂i represents predicted shape vertices
and mean distance DMean, which is the mean value of the
nearest bidirectional point-to-surface distance [9] to evaluate
the difference between ground truth and predicted shapes.
We also compared the difference between the ground truth
and predicted shape to the difference between the ground
truth and template shape to ascertain how much deformation
the network had processed. Because distance measures do
not reflect the quality of surface smoothness, we visually
inspected the output.

B. Results

Euclidean distance error are shown for the interpatient
test set (Fig. 3(a)) and the intrapatient test set (Fig. 3(b)).
The blue bars show Euclidean distance error between ground
truth and estimated shape in Experiment 2, with the mean
value being 20.98mm, the orange bars show the error be-
tween ground truth and estimated shape in Experiment 1,
with the mean value being 22.29mm and the green bars
show the error between ground truth and the initial template
in Experiment 1, 2, with the mean value being 45.86mm.
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(a) (b) (c) (d)

Fig. 4. Visualization result of duodenum reconstruction. The meshes without faces are ground truth, the mesh with faces is estimated shape: (a) the purple
shape is initial template, (b) the green shape is λlaplacian = 1, estimated shape with a smooth surface, (c) the green shape is λlaplacian = 0, estimated
shape with a wrinkled surface, (d) the green shape is the estimated intrapatient shape.

TABLE II
PERFORMANCE RESULTS FOR EXPERIMENT 3

Initial Experiment 3

ED1(mean) [mm] 28.98 6.13
ED1(min) [mm] 9.22 2.11
MD2(mean) [mm] 13.13 1.94
MD2(min)[mm] 3.75 0.83
1 Euclidean distance (ED)
2 Mean distance (MD)

The purple bars show the Euclidean distance error between
ground truth and estimated shape in Experiment 3,with the
mean value being 6.13mm and the yellow bars show the error
between ground truth and the initial template in Experiment
3, with the mean value being 28.98mm. The average and
minimum values of Euclidean distance and mean distance
for experiments are shown in Table I and Table II. In
Experiments 1 and 2, compared with the initial error, all
evaluation values are smaller. Based on this, we conclude
that it is feasible for the framework to learn mesh data
deformation and predict the shape of the duodenum from
data about the surrounding organs. The results of experiment
2 were better than those of Experiment 1. The resulting
algorithm from Experiment 3 will produce more accurate
results if using intrapatient organ deformation data. The
visual result is shown in Fig. 4. Fig. 4(a) shows the difference
between template and one ground truth. To clearly show the
position of the estimated result compared with that of the
ground truth, we added the ground truth of the liver. In
experiments 1 and 2, the estimated shape is smooth (Fig.
4(b)). To show how the wrinkled surface would appear, we
show an image for which λlaplacian = 0 (Fig. 4(c)). Fig.
4(d) shows the final result of experiment 3.

IV. CONCLUSION

This method estimates the shape and position of difficult
or undetectable organs from easily detectable organs using a
GCN. To obtain an accurate position and a smooth shape, the
network was trained with positional loss, discrete Laplacian
loss, and translation loss functions. We used both interpatient
data and intrapatient 3D-CT data. Compared with single-
organ input, using multi-organ input required more time

but resulted in better performance. In future work, we will
improve the framework and reduce prediction error to a
clinically acceptable range.
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