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Abstract— Development of wearable data acquisition systems 

with applications to human-machine interaction (HMI) is of 

great interest to assist stroke patients or people with motor 

disabilities. This paper proposes a hybrid wireless data 

acquisition system, which combines surface electromyography 

(sEMG) and inertial measurement unit (IMU) sensors. It is 

designed to interface wrist extension with external devices, 

which allows the user to operate devices with hand orientations. 

A pilot study of the system performed on four healthy subjects 

has successfully produced two different control signals 

corresponding to wrist extensions. Preliminary results show a 

high correlation (0.42-0.75) between sEMG and IMU signals, 

thus proving the feasibility of such a system. Results also show 

that the developed system is robust as well as less susceptible to 

external interferences. The generated control signals can be used 

to perform real-time control of different devices in daily-life 

activities, such as turning ON/OFF of lights in a smart home, 

controlling an electric wheelchair, and other assistive devices. 

Such a system will help decrease the dependency of disabled 

people on their caretakers and empower them to perform their 

daily-life activities independently.  

I. INTRODUCTION 

Stroke is one of the leading causes of chronic disability for 
people and has devastating socioeconomic impacts. Recent 
studies show that there are about 25.7 million stroke survivors 
worldwide, and individuals recovering from stroke often 
experience helplessness and social isolation, which is linked to 
their decreased ability to manage their daily activities and 
subsequently, increased depression [1]. Thus, stroke survivors 
mainly depend on others in their daily routines, making it 
necessary to design a compact, portable and easy-to-use 
system that can assist them to lead an independent life. 

Approximately 65% of stroke patients suffer from 
hemiparesis, i.e., paralysis or muscular weakness on either side 
of their body [2]. Thus, the idea is to analyze their healthy hand 
movements and decode them to operate targeted devices (like 
smart home appliances, assistive devices, etc.). For such real-
time human-machine interaction (HMI) applications, surface 
electromyography (sEMG) is widely being used. It is an 
electric signal produced from muscle movements that can be 
acquired by placing EMG electrodes on the skin surface [3]. 
Vasylkiv et al. [4] has used sEMG sensors that identified 
different hand gestures to control smart home lights. Similarly, 
in [5-7], sEMG signals are used to control rehabilitative 
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devices. Besides, Yid et al. [8] and Song et al. [9] developed a 
system to maneuver an electric wheelchair prototype. This 
system uses the electric potential generated by finger 
movements [8] and squeezed fist [9]. However, there are 
several limitations of sEMG based systems, which need to be 
taken into consideration for future improvement. These 
systems are sensitive to electrode positioning and prone to 
sweat conditions and changes in skin impedance [10-11]. To 
acquire good quality sEMG signals, high-tension movements 
are required to achieve muscular contraction, causing the 
muscles fatigue and, thus, deteriorating the performance of the 
system [4]. Furthermore, there are also challenges related to 
sEMG signal processing that includes algorithm robustness, 
adjustment of signal variability, and artifact removal [12].    

The aforementioned shortcomings can be overcome by 
developing a hybrid data acquisition system by combining 
sEMG and inertial measurement unit (IMU) motion sensors.  
IMU is a motion-tracking sensor that contains a gyroscope and 
accelerometer and can determine accurate hand movements. 
Previous research [13-15] has shown that the combination of 
sEMG and IMU sensors increases hand movements detection 
and hand gestures recognition accuracy. Zhang et al. [13] used 
five sEMG sensors and a 3-axis accelerometer to classify 72 
Chinese sign language words. Georgi et al. [14] used 16 sEMG 
and an IMU sensor to identify 12 different hand gestures. Wolf 
et al. [15] developed a BioSleeve that contains eight sEMG 
and an IMU sensor, which is able to classify nine dynamic and 
17 static gestures. These studies have shown the promising 
results; however, none of them is a wireless system and does 
not generate the control signals for HMI applications. 

In this work, a pilot study is presented for developing a 
wearable and wireless data acquisition system for stroke 
patients. The system contains two sEMG (located on the 
forearm) and an IMU sensor (located near the wrist) and is 
easy to use on a daily basis. The system is able to detect 
different wrist extension angles and muscle potential 
generated by extensor carpi radialis muscles (primary muscle 
to perform wrist extension [16]). Based on the recorded data, 
it sets different threshold levels for sEMG potential, and on 
achieving the threshold, it generates the respective control 
signals to wirelessly operate the peripheral devices. Moreover, 
the integration of wrist extension and EMG signals increases 
the accuracy for generation of desired control signals. 
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II. MATERIALS AND METHODS 

A. Hardware Development 

A hybrid data acquisition system is developed that is 
capable of analyzing wrist extension and correlate it with the 
muscle activity produced by that movement. Based on the 
recorded parameters, the system can produce command 
signals to control the assistive/rehabilitation devices. During 
the system development, the following design requirements 
and specifications are considered: 

 Should be compact, wearable, and portable, 

 Should be wireless: The system should transmit recorded 
data using Bluetooth communication, 

 Should be functional offline: The system has to be 
developed with consideration on the fact that the user 
cannot always depend on having access to a nearby 
computer with an internet connection, 

 Able to monitor wrist extension angle via measuring 
wrist pitch orientation, and 

 Able to measure the potential generated by the activity of 
extensor carpi radialis muscle, which plays a vital role in 
wrist extension movement [161]. 

 

The schematic representation and hardware prototype of 
the proposed wearable data acquisition system are shown in 
Fig. 1 and Fig. 2, respectively. The system mainly comprises 
sEMG sensor V3, IMU motion sensor, Arduino Nano, 5V 
power supply, DC/DC converter, and Bluetooth data 
transmission module.  

sEMG sensor V3: It contains a rectification unit(converts 
acquired raw analog sEMG signal into a digital signal), 
followed by modules for smoothening and amplifying a 
digitized signal. It also contains electrodes that are positioned 
on the targeted muscle groups depending on the application.  

  

 

IMU Motion Tracking Sensor (MPU-9250): The MPU-9250 
from InvenSense is a 9-axis motion-tracking sensor containing 
a 3-axis accelerometer, 3-axis gyroscope, and 3-axis 
magnetometer. In medical applications, it can be used to 
determine different body movements by analyzing roll, yaw, 
and pitch orientations with respect to a defined reference point. 

Arduino Nano: This microcontroller unit is very small in size 
(18 x 45 mm) and can analyze both analog and digital signals. 
It is recognized as the ‘Brain’ of the system, as it controls the 
communication between interfacing components and capable 
of performing the computation needed for the execution of 
required action.  

DC/DC Converter (NMH0505DC): These converters are 
ideally suited for converting DC voltage into dual regulated 
DC voltage, e.g., converting 5V DC input to ±5V output. Also, 
they contain galvanic isolation that reduces the circuit noise. 

Bluetooth Data Transmission Module (HC-05): This module 
is designed for establishing wireless communication between 
master and slave devices. For instance, transmitting and 
receiving the task-specific commands between the 
microcontroller (master) and external devices (slaves), such as 
sensors, robotic orthosis, electronic wheelchair, etc. 

In the developed system, Arduino Nano is interfaced with 
an sEMG sensor, IMU sensors, and Bluetooth transmission 
unit (Fig. 1). The Arduino is powered up by the 5V power 
bank, whereas the IMU sensor and Bluetooth module is 
directly driven by Arduino. sEMG sensor V3 is regulated by 
Arduino via NMH0505DC DC/DC converter, which converts 
5V DC Arduino output to ±5V that is required by the sEMG 
sensor. 

B. System Architecture 

The system architecture is shown in Fig. 3, which 
represents the overall methodology, starting from wrist 
extension to controlling external devices. Firstly, the 
electrodes and sensors are positioned to the following 
allocated locations (Fig. 2): (i) The sEMG electrodes are 
positioned on extensor carpi radialis muscle to measure the 
muscle potential, (ii) One IMU sensor is placed on the opposite 
side of palm that measures the wrist extension angle with 
respect to forearm, and (iii) One IMU sensor is placed on the 
top of the device, which acts as reference sensor to measure 
the extension. After electrodes placement, the device is 
calibrated for each user. The calibration process is user-
specific, and depending on their muscle activities, the two 
threshold levels (Th1 and Th2) of sEMG potentials are set. 
Once the calibration is done, the wrist extension action is 
performed. The pitch orientation of the wrist is detected, and 
the bipolar sEMG configuration applied on the extensor carpi 
radialis enables the simultaneous monitoring of the muscle 
activity. The acquired data from sensors is sent to the Arduino, 
which determines the correlation between IMU and sEMG 
signals. If the correlation coefficient is higher than 0.3, then 
the double-level threshold method is applied on sEMG signal 
[17]. The threshold method determines the control command 
(CC) generation based on muscle activation and deactivation 
state. If the sEMG potential amplitude is greater than Th1 
baseline, the Arduino returns CC-1, and if greater than Th2, 
the Arduino returns CC-2 state. For instance, to control the 
ON/OFF functioning of smart home light, the Arduino 
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Figure 1. Schematic Representation of Portable Data Acquisition System 

Figure 2. Hardware Prototype for Portable Data Acquisition System 
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wirelessly sends the control commands based on the level of 
threshold. It turns ON the light on achieving Th1 and turns it 
OFF on attaining Th2. Additionally, the relative orientations 
of the wrist, the muscle activity, and control signal generation 
information are sent to a computer via Bluetooth, where the 
received data is recorded and visualized via the Matlab 
program.  

III. EXPERIMENTAL RESULTS 

A pilot testing of the developed system is performed on 
four healthy subjects (S1-S4), while wearing the device in the 
same configuration and with the arm placed on a table (Fig. 2). 
Initially, each user is asked to execute 15 lower angle 
extension and 15 higher angle extension movements for device 
calibration. Fig. 4 shows the boxplot representation of the 
wrist’s pitch angle (IMU sensor output) and the extensor carpi 
radialis potential (sEMG sensor output) during the successive 
wrist extension cycles. Each boxplot contains four quadrants 
(Q1-Q4), in which Q1 and  Q2 represent low angular pitch 
extensions and their corresponding muscle potentials, 
whereas, Q3 and Q4 represent high angular pitch extensions 
and their respective potentials. During calibration, the average 
muscle potential against low and high angle extensions are 
used to compute the sEMG Th1 and Th2, respectively (Fig. 4). 
Additionally, a strong correlation between the sEMG and IMU 
data, as indicated by the calculated correlation coefficients of 
0.42-0.75 (Fig. 5), further validates the accomplishment of 
correct calibration 

 After calibration, each subject executes four wrist 
extension movements (Task1-Task4) and generates CC based 
on correlation values and achieved thresholds (Table I). First, 
the algorithm calculates the correlation between IMU and 
sEMG signal. If the correlation is less than 0.3, then no control 

signal is generated. In case the coefficient is greater than 0.3, 
the sEMG voltage is analyzed. Based on the achieved Th1 or 
Th2, either of the two different Arduino digital output ports is 
set to 5V, which indicates the generation of control commands, 
CC-1 or CC-2. The external devices can be controlled by either 
connecting to the Arduino output digital port or interfacing 
wirelessly via Bluetooth communication. In Table I, for all 
four subjects, the correlation, wrist pitch orientation, muscle 
potential, and control command produced against the four 
different wrist extensions are reported. It is evident that each 
subject successfully generates the correct control signal related 
to specific threshold values for each wrist extension. The result 
also shows that all the users are able to achieve a correlation 
greater than 0.3, which confirms that all the acquired muscle 
potentials are generated due to wrist extension, and no external 
interference or artifact is included in the obtained signal. As 
the developed system is user-specific, each subject has its own 
voltage threshold against the wrist extension angle. 

  

‘IF’ correlation co-efficient between IMU and 

EMG signal is in range of 0.3-1, ‘AND’ EMG 

value is greater than specific threshold 

ELSE 

Control Applications 

HYBRID APPROACH 

Figure 4. Boxplot Representations (a) Pitch Angle during the Wrist 
Extension (IMU Output). (b) Voltage Amplitude from the Extensor 

Carpi Radialis during the Wrist Extension (sEMG Output). 

 
 

Q1 (Quadrant 1 – 25%) 

Q2 (Quadrant 2 – 25%) 

Q3 (Quadrant 3 – 25%) 

Q4 (Quadrant 4 – 25%) 

(a) (b) 

S1: Th1=370 mV, Th2=510 mV 

S2: Th1=240 mV, Th2=350 mV 

S3: Th1=200 mV, Th2=300 mV 

S4: Th1=790 mV, Th2=900 mV 

 

Figure 3. Methodology for Controlling External Devices via 

Hybrid Approach Based Portable Data Acquisition System 

Figure 5. Wrist Pitch (Blue) and Extensor Carpi Radialis Activity 

(Red) during 30 Cycles of Wrist Extension in Four Healthy Subjects. 

Correlation Coefficient between the IMU and sEMG Signals are 
indicated in the Title for Each Subject. 
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IV. DISCUSSION AND FUTURE WORK 

In the presented paper, a pilot study is performed to 

demonstrate the functionality and feasibility of using the 

hybrid approach (sEMG + IMU) to develop wireless wearable 

data acquisition system. The preliminary results are 

promising and show that the proposed portable system is able 

to detect the user’s intention for producing control signals 

based on IMU and sEMG signals. The initial testing is 

performed on healthy subjects; however, the final objective is 

to test the system on stroke patients. This system will assist 

stroke patients in regaining their independence by controlling 

different devices in their surroundings. For instance, the 

stroke patient can turn ON/OFF the light or fans at their smart 

home by their non-paretic wrist movements. In addition, they 

can perform the rehabilitation exercises on their own by 

regulating the muscle stimulation device or robotic glove 

through the movement of their healthy limb. The current 

limitation of the system is its capability to work only for two 

degrees of freedom applications (like executing ON/OFF 

functions). In the future, the design will be enhanced by 

introducing multiple IMU sensors for monitoring the finger 

movements and develop a machine/deep learning algorithm 

for classification. Such advanced algorithms will extract 

different combinations of IMU and sEMG features to 

command the devices with higher degrees of freedom. For 

example, controlling the movement of an electric wheelchair 

in different directions. Currently, we are working on 

developing functional electrical stimulation (FES) device and 

robotic assistive unit for stroke patients that can be operated 

by using the developed wearable acquisition system. 

Furthermore, in the future, randomized controlled trials 

(RCTs) will be performed on stroke patients, where the 

proposed system's clinical performance will be compared 

with the ‘Only EMG’ based data acquisition system. 
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(1) Correlation, (2) Pitch Angle, (3) sEMG Potential, 

(4) Comments (Th=Threshold Level, CC=Control Command) 

Task 1 Task 2 Task 3 Task 4 

S1 1) 0.6 
2) 54º 

3) 410 mV 

4) Exceeds 
Th1 and 

generates 

CC-1 

1) 0.55 
2) 65º 

3) 630 mV 

4) Exceeds 
Th2 and 

generates CC-

2 

1) 0.7 
2) 20º 

3) 205 mV 

4) Below 
threshold and 

no CC 

Generation 

1) 0.6 
2) 60º 

3) 550 mV 

4) Exceeds 
Th1 and 

generates CC-

1 

S2 1) 0.45 
2) 42º 

3) 170 mV 
4) Below 

threshold 

and no CC 
Generation 

1) 0.5 
2) 77º 

3) 270 mV 
4) Exceeds 

Th1 and 

generates CC-
1 

1) 0.65 
2) 81º 

3) 360 mV 
4) Exceeds 

Th2 and 

generates CC-
2 

1) 0.75 
2) 60º 

3) 550 mV 
4) Exceeds 

Th1 and 

generates CC-
1 

S3 1) 0.8 

2) 46º 
3) 220 mV 

4) Exceeds 

Th1 and 
generates 

CC-1 

1) 0.75 

2) 53º 
3) 310 mV 

4) Exceeds 

Th2 and 
generates CC-

2 

1) 0.85 

2) 40º 
3) 180 mV 

4) Below 

threshold and 
no CC 

Generation 

1) 0.7 

2) 52º 
3) 230 mV 

4) Exceeds 

Th1 and 
generates CC-

1 

S4 1) 0.55 

2) 47º 
3) 820 mV 

4) Exceeds 

Th1 and 
generates 

CC-1 

1) 0.6 

2) 35º 
3) 710 mV 

4) Below 

threshold and 
no CC 

Generation 

1) 0.6 

2) 65º 
3) 880 mV 

4) Exceeds 

Th1 and 
generates CC-

1 

1) 0.75 

2) 85º 
3) 920 mV 

4) Exceeds 

Th2 and 
generates CC-

2 

TABLE I.  PRELIMINARY RESULTS FOR PILOT TESTING 

OF THE PROPOSED PORTABLE DATA ACQUISITION 
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