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Abstract— Tuberculosis (TB) is a serious infectious disease
that mainly affects the lungs. Drug resistance to the disease
makes it more challenging to control. Early diagnosis of
drug resistance can help with decision making resulting in
appropriate and successful treatment. Chest X-rays (CXRs)
have been pivotal to identifying tuberculosis and are widely
available. In this work, we utilize CXRs to distinguish between
drug-resistant and drug-sensitive tuberculosis. We incorporate
Convolutional Neural Network (CNN) based models to
discriminate the two types of TB, and employ standard and
deep learning based data augmentation methods to improve
the classification. Using labeled data from NIAID TB Portals
and additional non-labeled sources, we were able to achieve
an Area Under the ROC Curve (AUC) of up to 85% using a
pretrained InceptionV3 network.

I. INTRODUCTION

Tuberculosis (TB) is a global disease caused by the bac-
terium Mycobacterium tuberculosis, which is spread through
the air. According to the World Health Organization, in
2019 an estimated 10 million people were infected with TB
and about 1.4 million died from the disease [1]. Efforts to
control TB have been hindered by the rise of drug-resistant
strains, where in 2019 about half a million people developed
rifampicin-resistant TB out of which 78% were multidrug-
resistant [1]. Early detection of drug resistance enables more
specific drug treatment, reduces the period of infectiousness
and disease spread in addition to improving outcomes [2].

Current diagnostic methods for identifying drug-resistant
TB (DR-TB) infections include conventional culture growth
over several weeks and rapid molecular testing [3]. These
procedures are not feasible globally, especially for countries
unable to scale up their testing capacities. An automated
computational approach that utilizes widely available tech-
nology is thus desirable. Chest X-rays (CXRs) are exten-
sively used in detection of tuberculosis, and thus offer a
potentially natural avenue for discriminating between DR-
TB and drug-sensitive TB (DS-TB).

In this work, we evaluate multiple CNN architectures and
training strategies with the aim of differentiating between
DR-TB and DS-TB. We evaluate both pre-trained CNNs as
simple N-layer custom CNNSs. In terms of training strate-
gies, we evaluate the use of different data augmentation
approaches, augmenting the data statically beforehand or
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dynamically during training. Along with that, we generate
synthesized images for DR-TB and DS-TB from the original
images using Generative Adversarial Networks (GANs). We
utilize a unique TB dataset provided by the US National
Institute of Allergy and Infectious Diseases [4]. This patient
based dataset includes clinical, genomic, and radiological
data (CXRs and CT), but most importantly, it includes
the results of drug susceptibility testing. Finally, we utilize
several publicly available TB image datasets with unknown
drug susceptibility to further enhance our classifier training.

II. PREVIOUS WORK

Computational identification and classification of lung
diseases in medical images has been greatly facilitated by
advancements in deep learning [5]. In the context of TB,
usage of CXRs to classify an image as TB/not-TB has been
described in multiple publications. Even simpler architec-
tures such as AlexNet and GoogleNet, used with around 1000
training images, have shown good performance, exceeding
95% accuracy on some datasets [6]. The specific task of
detecting TB in CXRs has seen great success, with multiple
commercial products available, and a recent study reporting
an area under the receiver operating characteristic curve of
0.92 or greater, when evaluated on unseen data [7].

Very few works have dealt with identifying the type of TB,
DR-TB or DS-TB, from images. As part of the ImageCLEF
2017 and 2018 challenges, this question was posed using
CT images. In 2017/2018 participants of the challenge were
provided with a training set comprised of 230/259 training
CTs and 223/236 testing CTs. After running the challenge
for two years, the organizers said that “After two editions
we concluded that the MDR (Multi-Drug Resistant) subtask
was not possible based only on the image.” ' It should be
noted that the size of the training dataset was very small, and
likely adversely affected deep learning based approaches.

In a different study [8], our group had moderate success
in differentiating between DR-TB and DS-TB using CXRs,
achieving an AUC of 0.66 utilizing hand-crafted shape and
texture features. In clinical research, several publications
describe using imaging (CXR or CT) to identify clinical
findings that potentially differentiate between DR-TB and
DS-TB. In [9], the authors found the DR-TB class to have
more large lesions whereas the DS-TB class had more
medium and small lesions. In [10], the authors found that
the DR-TB class was characterized by having thick-walled
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cavities. Finally, in [11], the authors found that presence of
multiple cavities was a predictor of DR-TB.

Based on our initial results, and the more recent clinical
observations, we believe CXRs can potentially be used for
differentiating DR-TB from DS-TB using a deep learning
approach, which is described in the following sections.

III. METHODS

To discriminate between DR-TB and DS-TB, this work
collects and processes CXR images from different sources,
selects models trained with deep learning based approaches,
and uses training strategies to improve classification perfor-
mance. The CXRs used in this work are from the following
sources: TB Portals [4], Montogomery County and Shenzhen
chest X-ray sets [12], and the TBX11K large scale tuberculo-
sis dataset [13]. Table I lists the number of samples for each
set. The TB Portals dataset is the only one which contains
results of drug susceptibility testing, indicating if the image
is DR-TB or DS-TB. For all other datasets, we assume the
images are DS-TB as that is significantly more common. To
ensure that our evaluation is valid, we only use images from
the TB Portals dataset in our testing.

A. Data preprocessing

1) Data Selection: The TB portals dataset contains im-
ages from hospitals in 16 countries. Because of this, there
are variations in the quality of images. We discarded images
that are non-pulmonary, from lateral views, or non-grayscale.

Because an early-stage distinction of drug sensitivity or
resistance is desirable, only images from a patient’s first visit
were selected for this analysis. Further, to give equal weight
to all patients, a single image was used per patient even when
multiple images were acquired on that visit.

2) Cropping of lung regions from CXRs: CXR images
often include significantly sized regions that are outside
the lungs, such as shoulders and neck. These regions are
not relevant for the classification and in fact can be a
hindrance in developing accurate models. Cropping a tight
region around the lungs and removing unnecessary regions
also allows for a more consistent size of the lungs across
multiple images once they are rescaled. We therefore use a
deep learning approach to crop the original CXRs to the
lung region. During the cropping process, the CXRs are
blurred by Gaussian smoothing with a standard deviation
of 0.5 to reduce the high frequency signal components.
Each smoothed image is resampled to a fixed dimension
(256x256), before normalizing the intensities to zero mean
and unit standard deviation. The CXRs are passed through
a U-Net based segmentation model [14]. The resulting lung
masks are used to compute a bounding box to crop the lung
region from the original CXRs. The segmentation model was
trained on two datasets [12], [15] yielding an IoU of 0.971
and 0.956, respectively. Subsequently, the original images are
cropped using the bounding box coordinates, downsampled,
and renormalized. Figure 1 illustrates this process.
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Fig. 1: Preprocessing pipeline for CXRs

B. Network Architectures

For the classification task, we evaluate several standard
CNN architectures as well as three custom CNNs. The
standard networks include: AlexNet [16], DenseNet [17],
InceptionV3 [18], ResNet [19], and Xception [20]. For each
of the standard networks, we removed the dense layers after
the final convolutional layer and added new dense layers.
Table II shows the number of parameters for each of the
networks.

C. Data Augmentation

Most deep CNNs require a large amount of good quality
data for the models to generalize well. As the number of
available samples for each class is relatively small, we use
two augmentation approaches:

1) Image transformations: The following transformations
are applied to the original images: rotation (+10°), trans-
lation (£5 pixels), blurring (N(0.0,1.0)), and histogram
equalization. We intentionally apply small parameter values
for these methods as they replicate the relatively small
variations in X-ray images compared to images from other
domains. We evaluate the usage of static augmentation, one
time application of the transformations to the entire dataset
before training starts, and dynamic augmentation, where
original images are modified on the fly during batch training.

2) Synthetic Image Generation: Aside from image trans-
formations, we synthesize images from both categories to
increase the number of samples. We use the progressive
growing of generative adversarial networks (PG-GANs) [21].
PG-GANSs were chosen as they have been shown to generate
relatively stable, quality, and variant images. For generating
synthetic images for each category during each growth
phase of [4x4,8x8,...,128x128]|, batch sizes and epochs

Sources DR-TB DS-TB
TB Portals 1821 878
Montgomery County [12]* 0 58
Shenzhen [12]* 0 336
TBX11K [13]* 0 549
Synthetic (using GAN) 1000 1000
Total 2821 2821

TABLE I: Number of images from each source. * Patients
from [12] and [13] are assumed to be drug sensitive.
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of [128, 64,64, 32,32,16] and [100, 250, 250, 250, 250] were
used respectively. The final outputs are up-sampled to the
input size of the classifying network.

IV. EXPERIMENTS

We evaluate model capabilities to distinguish between DR-
TB and DS-TB on a patient-level basis. In all experiments,
we use 10-fold cross validation.

We start by evaluating multiple models on the TB portals
dataset using non-augmented training. We then evaluate the
effects of various augmentation strategies on the best models.
Finally, we add TB images from external sources, labeling
all of them as DS-TB, to the best model from the last step.

A. Model Selection

The pretrained network architectures were designed to
address multi-class classification tasks. While we only deal
with two classes (DR-TB and DS-TB), the size of the avail-
able dataset is much smaller in comparison. We therefore
initially evaluate multiple standard architectures and several
custom CNNs using the TB Portals dataset.

B. Effects of Augmentation

Once we identify the more promising architectures, we
explore the effects of dynamic and static augmentation
strategies as well as utilizing synthetically generated images
in the training stage. For this experiment, we only select
the best performing pretrained-networks (InceptionV3 and
Xception) and the best performing custom network. We also
evaluate the effect of increasing the amount of statically
augmented data on the balanced dataset created in the
previous experiment.

C. Including Additional Data

As shown in Table I, the number of DR-TB images
in the TB portals dataset is significantly higher than the
number of DS-TB images. In an effort to utilize images from
all available patients in the imbalanced TB portals dataset,
additional TB images from other sources were also included.
We label these images as DS-TB, as this is the prevalent type
of TB. The previous augmentation strategies were combined
with the additional data to see if they influence the overall
AUC performance. Note that these images are only used for
training purposes as there is no drug susceptibility testing
associated with them.

V. RESULTS

In our network architecture comparison, without any aug-
mentation, pretrained InceptionV3 and Xception networks
had the best performance, as can be seen in Table II.
These two networks, and several custom CNNs (6-layer, 10-
layer, 12-layer), were also trained with random initialization.
Among the custom networks, the 6-layer CNN had the best
area under the ROC curve (AUC) with 0.744.04 compared to
the rest of the custom networks. When randomly initialized,
the performance of InceptionV3 and Xception deteriorated.

Different augmentation methods and addition of synthetic
images did not yield better performance for these networks,

Parameters

Architecture . . AUC
(in millions)
Pretrained Networks
AlexNet [16] 5.7 0.79 (£ .02)
DenseNet121 [17] 7.2 0.79 (£ .02)
DenseNet201 [17] 18.6 0.80 (= .02)
InceptionV3 [18] 22.3 0.81 (+ .03)
InceptionResNetV2 [18] 54.7 0.77 (= .05)
ResNet50 [19] 24.1 0.80 (£ .03)
ResNet152 [19] 58.7 0.77 (£ .03)
Xception [20] 21.3 0.81 (% .02)
Random initialization
6-layer CNN 3.0 0.74 (= .04)
10-layer CNN 8.6 0.70 (£ .03)
12-layer CNN 9.1 0.65 (£ .04)
InceptionV3 [18] 22.3 0.76 (= .03)
Xception [20] 21.3 0.76 (£ .03)

TABLE II: Mean AUC (Area Under ROC Curve) of 10-fold
cross validation results when various pretrained and custom
networks are tested on TB Portals dataset

as shown in Table III. Performance did not scale with the
increase in augmented data. When number of samples was
increased to 3X and 4X original samples size by static
augmentation, performance decreased. Interestingly, the per-
formance of the custom 6-layer network improved with the
same training strategy. We chose to continue our evaluation
using the InceptionV3 network as its performance remained
the most consistent with these augmentation strategies.

Figure 2 summarizes the performance evaluation of Incep-
tionV3, using various datasets and augmentation strategies.
We see that static augmentation has an overall positive effect
on model performance compared to the dynamic augmen-
tation strategy. We also see that the addition of images
from other sources to the training set combined with static
augmentation lead to the best AUC overall performance of
85%.

Although the inclusion of both the synthetic data and data
from additional sources improves performance when using
dynamic augmentation, it did not have an effect when using
static augmentation. The variance in performance is slightly
better when both synthetic and additional data are included.

Finally, to inspire confidence in the predictions of our
network, we utilize GradCAM heatmaps [22] to visualize its
focus. Figure 3 shows two heatmaps for correctly predicted

Network . Static .
. Dynamic Synthetic
Architecture X 3x X

InceptionV3 0.80 0.81 0.80 0.79 0.81
(pretrained) (£.03) (£.03) (£.02) (x.02) (£.02)
Xception 0.80 0.80 0.77 0.79 0.81
(pretrained) (£.03) (£.03) (x04) (£.03) (£.03)
6-layer CNN 0.76 0.76 0.74 0.76 0.75
(£.03) (£.02) (£02) (£.03) (£.03)

TABLE III: AUC with dynamic and static augmentation and
with augmentation using GAN generated images.
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Fig. 2: Mean AUC performances of the InceptionV3 net-
work with static or dynamic augmentation and including a)
synthetic images, b) images from [12] and [13] (referred in
figure as additional sources) c) both. These additional images
with static augmentation provided the best performance.

——

Fig. 3: GradCAM heatmaps superimposed on the original
images, Classified as DR-TB (left image) and DS-TB (right
image) due to likelihood values of .99 and .05 respectively.

VI. CONCLUSIONS

This paper presents an evaluation of models for discrim-
inating between drug-resistant and drug-sensitive TB in the
TB portals dataset, using augmentation strategies and other
publicly available data. With a 10-fold cross validation, we
achieve the best AUC performance of 85%. Even with-
out augmentation and additional data, but with pretrained
weights, we achieve a 81% AUC performance with Incep-
tionV3 and Xception networks. GradCAM heatmaps affirm
that the models learn from relevant areas from the CXRs
during the training process. Despite discouraging earlier
work in the literature, our work has shown that discriminating
between DR-TB and DS-TB can be possible in CXRs for a
sufficiently large training set.
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