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Abstract— Though breath analysis shows promise as a non-
invasive and cost-effective approach to lung cancer screening,
biomarkers in exhaled breath samples can be overwhelmed
by irrelevant internal and environmental volatile organic com-
pounds (VOCs). These extraneous VOCs can obscure the
disease signature in a spectral breathprint, hindering the
performance of pattern recognition models. In this work, pre-
processing pipelines consisting of missing value replacement,
detrending, and normalization techniques were evaluated to
reduce these effects and enhance the features of interest in
infrared cavity ring-down spectra. The best performing pipeline
consisted of moving average detrending, linear interpolation for
missing values, and vector normalization. This model achieved
an average accuracy of 73.04% across five types of classifiers,
exhibiting an 8.36% improvement compared to a baseline model
(p < 0.05). A linear support vector machine classifier yielded
the best performance (79.75% accuracy, 67.74% sensitivity,
87.50% specificity). This work can serve to guide pre-processing
in future lung cancer breath research and, more broadly, in
infrared laser absorption spectroscopy in general.

I. INTRODUCTION

Exhaled breath analysis is an increasingly prominent area

of research, with potential applications in the detection and

monitoring of innumerable diseases. Breath is composed of

both exogenously and endogenously produced compounds,

the latter of which give insight into the body’s metabolic

processes and consequently, the state of the individual’s

health [1]. Since sample collection is non-invasive, painless,

and does not require skilled medical staff, breath analysis

is an attractive alternative to traditional imaging and biopsy

techniques.

One of the most natural applications for breath testing

is screening for lung cancer–the world’s most common and

deadliest cancer [2]–which is most often discovered too

late to be effectively treated [3]. Some health organizations

have recommended low-dose computed tomography for early

lung cancer detection, but the technology’s costs and ten-

dency for overdiagnosis have hindered the implementation

of widespread screening programs [4]. The need for more

effective and accessible screening has motivated considerable

effort in recent years to identify breath biomarkers for

lung cancer. Studies have used various technologies for

breath profile analysis, such as ion-mobility spectrometry,
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proton transfer reaction-mass spectrometry, and e-nose sen-

sor arrays, but the most common technique by far is gas

chromatography-mass spectrometry (GC-MS) [5]. GC-MS

is popular because it is able to identify volatile organic

compounds (VOCs) in a sample with near-certainty, allowing

researchers to define lung cancer by the presence or elevation

of particular VOCs in the breath.

Unfortunately, the VOCs concluded to be biomarkers

across studies of this type are inconsistent and occasionally

contradictory [6]. In a review of fifty mass-spectrometry

studies, the most frequently confirmed biomarkers were each

found only five times (i.e., 10% of the studies) [7]. Jia et

al. [6] attributed this lack of agreement to a number of

factors, many of which would be difficult or impossible to

control in a screening context. These include environmental

conditions at the time of collection like ambient temperature,

humidity, and exogeneous VOCs, as well as individual-

specific differences like diet, smoking habits, gender, and

comorbidities. Given the complex relationships, origins, and

metabolic pathways for the VOCs in exhaled breath, which

are generally not well understood [1], it may not be possible

to define the wide range of potential lung cancer breath pro-

files in terms of a handful of VOCs and their concentrations.

Indeed, the entire composition of the breath sample may

be necessary to fully characterize the lung cancer in an

individual. Rather than identifying and quantifying specific

VOCs, the ‘breathprinting’ approach to breath analysis con-

siders the overall sensor or analyzer response, a complex

pattern encompassing the blend of all VOCs in the breath.

Machine learning techniques can then be used to extract the

underlying disease signature from these patterns, enabling

the recognition of the disease in future samples. In this way,

distinguishing features are captured that might otherwise be

missed with a VOC-specific approach.

Though less common than GC-MS in breath analysis

research, laser absorption spectroscopy (LAS) is an attrac-

tive alternative for capturing breathprints. In recent years,

advances in analyzer hardware and laser sources have pro-

gressed LAS techniques to a degree comparable to GC-

MS in sensitive, effective breath profiling [8]. Furthermore,

the costly, time-consuming GC-MS analysis is generally

restricted to laboratory research, whereas laser-based tech-

nologies have the potential to advance breath testing to

real-world, clinical applications. These optical techniques

offer comparatively quick analysis times, require little to

no maintenance or calibration, and the analyzers can be

operated by non-experts [9]. With sufficient spectral range

and resolution, LAS is a practical, robust, efficient method
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for attaining breath profiles for lung cancer screening.

However, even with low instrumentation noise, spectral

breathprints vary greatly for different individuals and envi-

ronments due to the diversity of VOC profiles. The critical

information in the spectrum, the lung cancer’s signature, may

be very subtle and easily masked by these highly variable,

irrelevant signals [10]. Pre-processing techniques are there-

fore necessary to remove noise, improve uniformity across

spectra, and enhance important, discriminating features prior

to training a learning algorithm. This integral step allows for

the recovery of the disease’s true spectral biomarkers, and

thus the development of robust classification models that can

generalize to the entire population of lung cancer individuals.

Hence, in this study, a comprehensive investigation of pre-

processing techniques was performed for an ultra-sensitive

form of LAS, cavity ring-down spectroscopy (CRDS). Var-

ious normalization, detrending, and missing value replace-

ment techniques were evaluated for CRDS spectra based on

their ability to reveal the spectral features that accurately

distinguish non-small cell lung cancer patients from control

subjects. An analysis of this type has not yet been performed

for spectral lung cancer breathprints, nor for CRDS spectra in

general. This study aims to recommend techniques that can

reduce the effects of irrelevant VOCs in the spectra, which

should translate to various LAS breath analysis applications.

II. METHODS

A. Data

One hundred biopsy-confirmed lung cancer patients and 98

control subjects were enrolled in the study to provide breath

samples. Subjects gave informed consent as per the Horizon

Health Network’s Research Ethics Board (#100099), and

these analyses were conducted as approved by the University

of New Brunswick’s Research Ethics Board (#2019-068).

Collection was performed at three different hospitals using

Picomole’s exhaled breath sampler [11], which tracks CO2

levels to collect alveolar breath into Tenax TA sorbent tubes.

Subjects were asked to abstain from smoking for 4 hours

and drinking alcohol for 8 hours prior to collection, where

they were instructed to breathe deeply and exhale into a

single-use filter on the sampler’s mouthpiece until 10-litre

(10L) samples were amassed. Post-collection, the inclusion

criteria for lung cancer subjects were amended to exclude

patients with ambiguous or small-cell histologic subtypes

and patients that had undergone any form of lung cancer

treatment. Also disqualifying subjects that had missing data

(for example, if they were unable to provide the full 10L

sample), the remaining 62 pre-treatment, non-small cell lung

cancer (NSCLC) and 96 control subjects were used for this

analysis. A comparison of demographics and clinical factors

for the two cohorts is provided in Table I.

Infrared breath profiles were measured for each of the 10L

samples with CRDS. CRDS uses highly reflective mirrors

to increase the effective path length of light trapped in an

optical cavity. For a gas sample within the cavity, the decay

rate of the trapped light is measured to establish the sample’s

absorption spectrum. Measurements are ultra-sensitive due

TABLE I

SUBJECT DEMOGRAPHICS AND CLINICAL FACTORS

Factor Lung Cancer Control p-value

Sample size 62 96 -

Sex

Female 50% 53.1%
.75

Male 50% 46.9%
Age (µ± σ, years)

Female 68.2± 9.1 61.0± 14.3 .01*

Male 71.3± 8.3 65.9± 12.1 .03*

Smoking
Current smokers 19.4% 6.7%

< .0001†Former smokers 75.8% 48.9%
Never smokers 4.8% 44.4%

Other lung conditions 44(71.0%) 36(37.5%) < .0001†

Diagnosis
Adenocarcinoma 58.1%
Squamous cell carcinoma 37.1% - -
Unspecified NSCLC 4.8%

* t-test indicated a significant difference between groups (p < 0.05)
† Fisher’s exact test indicated a significant difference between groups (p < 0.05)
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Fig. 1. Example spectra for one subject, desorbed at temperatures A) 75°C,
B) 150°C, C) 225°C, D) 300°C.

to the long path length of the laser, which is approximately

one kilometer in total, and are unaffected by fluctuations

in laser intensity. Two CO2 lasers with carbon isotopes 12C

and 13C were tuned to a combined 73 lines in the mid-

infrared region, a favourable spectral range for the detection

of small molecules [12]. At each wavelength, the average

times from 500 ring-downs were measured for the breath

sample (τ ) and for a baseline nitrogen sample (τ0). The

absorption coefficients K comprising each spectrum were

calculated from the average ring-down times according to

K =
τ0−τ
c·τ0·τ

, where c is the speed of light. The analysis

was performed four times for each sample, at desorption

temperatures 75, 150, 225, and 300°C, yielding four different

spectra per subject. Fig. 1 shows the four spectra obtained

for one subject.

B. Data Pre-Processing Techniques

a) Missing Value Replacement: The imputation tech-

niques considered in this work fall into two categories: 1-

Way and n-Way. The 1-Way methods interpolate missing

values in a spectrum using only information from within

that spectrum, independent of all other subjects. The four

employed methods of this type are one (linear interpolation)

that uses only the absorption coefficients for the two closest

available wavelengths, and three (cubic spline, PCHIP: piece-
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TABLE II

LIST OF n-WAY MISSING VALUE REPLACEMENT TECHNIQUES

Technique Description

Euclidean D =
√

∑N
i=1[xj(i)− xk(i)]2

Stand. Euclideana D =
√

∑N
i=1[xj(i)/σ1 − xk(i)/σ2]2

City Block D =
∑N

i=1 |xj(i)− xk(i)|

Chebyshev D = max(|xj − xk|)

Minkowskib D = p

√

∑N
i=1[xj(i)− xk(i)]p

Cosine D = 1−
∑N

i=1
xj(i)xk(i)

√

∑

N
i=1

xj(i)2·
∑

N
i=1

xk(i)
2

Correlationc D = 1−
∑N

i=1
[xj(i)−µj ]·[xk(i)−µk]

√

∑

N
i=1

[xj(i)−µj ]2·
∑

N
i=1

[xk(i)−µk]
2

a σj and σk denote standard deviations of spectra xj and xk
b p denotes the Minkowski distance order (p = 3 in this study)
c µj and µk denote means of spectra xj and xk

TABLE III

LIST OF DETRENDING TECHNIQUES

Technique Description

Constant Offset yj = min(xj)

Lineara yj = aj · xj + bj

Quadratica yj = aj · x2
j + bj · xj + cj

Moving Average yj(i) =
1

2l+1

∑i+l
k=i−l

xj(k), i = l, 2, ...N − l

a aj , bj and cj denote the estimated coefficients for the fit to xj

wise cubic hermite interpolating polynomial, and modified

Akima interpolation) that fit splines to the entire spectrum

to extrapolate the missing points.

Contrarily, n-Way techniques use information from mul-

tiple spectra, leveraging measurements from other subjects

to find suitable replacement values. The seven equations

provided in Table II describe the N -dimensional distance (D)

between two spectra, xj and xk, for N = 73 coefficients. For

a spectrum with missing coefficients, D is used to define the

10 most similar spectra from the training set. A mean of the

corresponding values in these neighboring spectra are used

to replace the missing points for the spectrum in question.

To account for spectra with multiple missing coefficients,

all calculated distances were adjusted by a correction factor

N/n, where n is the number of wavelengths that are non-

missing for both xj and xk.

b) Detrending: Four 1-Way detrending techniques were

considered in this work, presented in Table III. In each case,

the trend yj was re-estimated for each spectrum xj and

subtracted to obtain the corrected residuals. For the constant

offset technique, this trend is simply a 0th degree polynomial

representing the minimum value in the spectrum. The linear

and quadratic detrending techniques are based on least-

squares polynomial fitting. The moving average method,

also referred to as 0th order Savitzky-Golay detrending [13],

captures the trend by smoothing the spectrum with a very

large moving window of 2l+1 points (l = 18 in this study).

c) Normalization: Six different techniques are defined

in Table IV; five 1-Way methods and one n-Way method. The

presented 1-Way normalization methods are common within

spectroscopy fields [10] and elsewhere, employing properties

TABLE IV

LIST OF NORMALIZATION TECHNIQUES

Technique Description

1-Way

Min-Max x̃j =
xj−min(xj)

max(xj)−min(xj)

1-Norm x̃j =
xj−µj

∑

N
i=1

|xj(i)|

Vector x̃j =
xj−µj

√

1

N

∑

N
i=1

xj(i)2

Peak x̃j =
xj−µj

max(xj)

Standard Normal Variate (SNV) x̃j =
xj−µj

σj

n-Way

Multiplicative Scatter Correction (MSC) x̃j =
xj−aj

bj

within the spectrum like its mean µj and standard deviation

σj for correction. The n-Way method, multiplicative scatter

correction [13], first requires an ideal reference spectrum,

which is estimated by taking the mean across all M subjects

in the training set (xavg). To correct a spectrum xj , it is

regressed onto xavg using a least-squares criterion, yielding

coefficients aj and bj to be used for normalization.

C. Evaluating Techniques

A pre-processing pipeline consists of one technique from

each of the three categories (Section II-B), applied sequen-

tially to the spectra in a given order. Cases without normal-

ization and detrending were also considered. Each pipeline

was evaluated by its ability to enhance the distinguishing

characteristics of the spectra.

Specifically, for a given set of techniques, the four spectra

for each subject were first pre-processed and combined into

a single feature matrix, consisting of a total 292 features

(73 per spectrum). The minimum redundancy maximum

relevance (mRMR) feature selection algorithm [14] was then

used to sequentially rank these features based on a difference

of Pearson correlation coefficients. Linear discriminant anal-

ysis (LDA) classifiers with feature sets ranging from 1 to 79

mRMR-ranked features (half the sample size) were trained

and validated using leave-one-out cross-validation. This pro-

cedure was repeated for every permutation of the techniques

under consideration. In the end, the model that provided

the best classification accuracy was recorded, thereby tuning

both the order of techniques and the number of selected

features. In case of a tie, models with fewer selected features

were preferred.

The 20 best-performing pipelines were further tested with

four other types of learning algorithms: a support vector

machine (SVM) with a linear kernel, quadratic discriminant

analysis (QDA) classification, k-nearest neighbor (KNN)

classification (k = 5), and a random forest (RF) with 100

decision trees. The average classification accuracies across

all learning algorithms were used for the final pipeline

ranking to ensure that a pipeline’s performance was not

dependent on a single type of classifier.

Additionally, to replicate real-world settings in which

the classifier’s test subjects would not be seen during the

pre-processing stage, some modifications were made for
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TABLE V

FIVE TOP PERFORMING PRE-PROCESSING PIPELINES

Rank
Missing Value
Replacement

Detrending Normalization
Accuracy
µ(σ)%

1 Linear2 Moving Average1 Vector3 73.04 (6.33)

2 PCHIP3 Moving Average1 Peak2 72.91 (4.27)

3 Akima1 Moving Average2 SNV3 72.66 (4.39)

4 Stand. Euclidean2 Quadratic1 SNV3 72.41 (5.31)

5 PCHIP1 Moving Average2 Vector3 72.28 (5.45)

1,2,3 Pipeline order (1st, 2nd, 3rd step, respectively)

TABLE VI

TECHNIQUES’ AVERAGE LDA PERFORMANCE ACROSS ALL PIPELINES

Category Rank Technique
Accuracy
µ(σ)%

Missing Value
Replacement

1 Stand. Euclidean 72.35 (2.35)
2 PCHIP 72.12 (3.79)
3 Linear 71.36 (3.36)
4 M-Akima 70.96 (3.65)
5 Euclidean 70.76 (3.24)
6 Cityblock 70.51 (3.40)
7 Cosine 70.51 (2.81)
8 Minkowski 70.49 (3.34)
9 Chebyshev 70.13 (3.07)
10 Cubic Spline 70.11 (3.59)
11 Correlation 69.75 (2.77)

Detrending

1 Moving Average 71.91 (2.85)
2 Quadratic 71.27 (3.38)
3 Linear 70.59 (2.72)
4 Offset 70.28 (4.21)
5 None 70.05 (4.21)

Normalization

1 SNV 73.03 (2.23)
2 Vector 72.93 (1.83)
3 1-Norm 72.31 (1.36)
4 Peak 71.89 (1.93)
5 MSC 71.46 (2.57)
6 Min-Max 68.75 (2.52)
7 None 65.37 (2.18)

pipelines containing n-Way techniques compared to those

containing only 1-Way techniques. The n-Way techniques

were applied using information from training subjects only,

requiring both the pre-processing and feature selection steps

to be repeated for each cross-validation fold. For pipelines

consisting of only 1-Way techniques, a single pre-processing

step was sufficient since the calculations for one subject were

independent from all other subjects.

III. RESULTS AND DISCUSSION

Of a possible 385 sets of techniques (equivalent to 1815

pipelines total, considering all permutations), the twenty best

performing pipelines with the LDA classifier were further

reduced to the top five in Table III based on performance

in SVM, QDA, KNN and RF classifiers. The top pipeline

across these five classifiers consisted of (1) moving aver-

age detrending, (2) linear interpolation for missing value

replacement, and (3) vector normalization. With this pipeline,

the SVM classifier achieved the highest accuracy, 79.75%

(67.74% sensitivity and 87.50% specificity). Compared to

a baseline model that applied only standardized Euclidean

imputation without detrending or normalization, the top

pipeline produced a significant improvement in classification

performance (on average across the five learning algorithms,

73.04% > 64.68%; p < 0.05). This finding demonstrates the

TABLE VII

FREQUENCY OF SELECTED PIPELINE ORDERS WITH LDA

Instances First Second Third

94 (35.6%) Detrending Normalization
Missing Value
Replacement

91 (34.5%)
Missing Value
Replacement

Detrending Normalization

66 (25.0%) Detrending
Missing Value
Replacement

Normalization

5 (1.9%)
Missing Value
Replacement

Normalization Detrending

5 (1.9%) Normalization
Missing Value
Replacement

Detrending

3 (1.1%) Normalization Detrending
Missing Value
Replacement

importance of a data pre-processing step, which is strongly

recommended for the development of future models using

spectral breathprints.

Notably, there were no statistically significant differences

between the accuracies for the top pipeline and the next

four highest ranked ones in Table III (p > 0.05), indicating

that these five pipelines are essentially interchangeable for

this application. In fact, many of the top pipelines are quite

similar, most often employing a form of shape-preserving

interpolation combined with moving average detrending and

1-Way normalization.

To observe the performance of individual pre-processing

techniques more generally, the LDA model accuracies were

averaged across all pipelines employing the same technique

(Table VI). The top techniques from each category, though

by a small margin in each case, are standardized Euclidean

distance imputation, moving average detrending, and stan-

dard normal variate normalization. These results reflect the

selected methods in the top pipelines of Table III. For other

types of laser absorption spectroscopy and/or diseases in

future studies, the pre-processing optimization process can

be narrowed down to include only the top few techniques in

each category, rather than requiring a full search.

While there are a handful of machine learning techniques

that permit missing data, missing values typically need to

be replaced to perform effective classification with so few

subjects and variables. In Table VI, standardized Euclidean

distance may work well as an n-Way technique for remedy-

ing missing CRDS coefficients because it corrects the spectra

by their standard deviation prior to comparison, perhaps

improving robustness to differences in large peaks compared

to other distance measures. Further, lower order Minkowski

variants, such as Euclidean (p = 2) and Cityblock distance

(p = 1), have been shown to outperform higher order

variants in high dimensions [15], evidenced in Table VI by

the poorer performance obtained by third-order Minkowski

and Chebyshev (p → ∞) distances. Interestingly, the PCHIP,

linear and M-Akima 1-Way techniques also performed well

despite the unfounded relationships they necessarily assume

between neighboring wavelengths. It is possible that more

subjects are needed for the n-Way techniques, since there

may be a lack of similar spectra in the nearest neighbor

search.

Given that CRDS absorption coefficients are calculated
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with respect to baseline nitrogen measurements, the baseline

or background correction necessary with many other forms

of spectroscopy (e.g. Raman and FTIR: Fourier transform

infrared spectroscopy) do not apply. In this context, the

purpose of detrending is instead to aid in the removal of

trends caused by highly concentrated, extraneous VOCs.

Considering the six distinct spectral branches for the two

CO2 lasers (9R, 9P, 10R, and 10P of the 12CO2 laser, 10R

and 10P of the 13CO2 laser), moving average detrending

outperformed other techniques in this respect by capturing

the baselines presented in each branch, acting almost as

piecewise detrending. The spectra in Fig. 1 may exemplify

why quadratic detrending was also successful, since the

baseline tended to be highest in the outer branches of the

measured region.

In combination with detrending, normalization techniques

remedy the high variability across spectra and improve the

classifier’s ability to recognize the lung cancer signature

in the group. The best performing normalization technique

over all LDA models, SNV normalization, is similar to

standardized Euclidean missing value replacement in that

it corrects spectra by their standard deviation. Vector, 1-

norm and peak normalization performed similarly well, even

appearing in the top 5 pipelines of Table III. As with the

n-Way missing value replacement techniques, it is possible

that more subjects are needed to achieve satisfactory results

with MSC. The results were significantly worse when no

normalization was applied, though, establishing it as an

essential step.

The order of pre-processing steps is also an important

consideration, as evidenced in Table VII. This table presents

the frequencies of the selected pipeline orders with LDA,

considering all pipelines that incorporated three techniques

(excluding no-detrending and no-normalization cases). No-

tably, detrending was preferred before normalization 95.1%

of the time. This order is typically adopted in FTIR and

Raman spectroscopy [10], in fact, and ensures that 1) nor-

malization is not affected by noisy trends and 2) normalized

scales are maintained. Future studies should therefore adopt

this standard while optimizing the position of missing value

replacement in the pipeline if necessary.

It should be noted that, first, feature extraction was

omitted in this study to avoid tying the results to specific

extraction methods. However, in a previous study with this

dataset, spectral derivatives were extracted along with one-

dimensional local binary patterns (1D-LBP), achieving a

classification accuracy of 86.10% (89.60% sensitivity and

80.70% specificity) [16], indicating that the addition of

feature extraction is advantageous for spectral breathprints.

Second, although this study was limited to non-small cell

lung cancer and cavity ring-down spectroscopy, the gen-

eral guidelines regarding the best individual techniques and

orders should extend to other applications, and provide a

reasonable starting point for further optimization. Finally, the

utilized sample size was relatively small for an optimization

of this type, and a larger dataset may be necessary to sub-

stantiate the findings. Importantly, a larger sample size would

also permit the implementation of deep learning techniques,

which may improve performance and bypass the need for

certain pre-processing steps like missing value replacement.

In conclusion, this study demonstrates the value of pre-

processing techniques for extraneous VOC management and

imparts a productive starting point for pattern recognition

with various diseases and forms of LAS.

ACKNOWLEDGMENT

The authors would like thank Picomole Inc. for providing

the raw CRDS data, their expertise and their support, espe-

cially Dr. Steve Graham, Dr. Gisia Beydaghyan, and Chris

Purves, P.Eng. Additionally, we would like to acknowledge

principal investigators Dr. Tony Reiman, Dr. Luisa Galvis-

Gomez, and Dr. Mahmoud Abdelsalam as well as the clini-

cians that contributed to sample collection at the Saint John

Hospital, Dr. Everett Chalmers Hospital, and the Moncton

Hospital, Canada.

REFERENCES

[1] A. Dent, T. Sutedja, and P. Zimmerman, “Exhaled breath analysis for
lung cancer,” J Thorac Dis, vol. 5, no. S5, pp. S540–S550, 2013.

[2] F. Bray et al., “Global cancer statistics 2018: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries,”
CA Cancer J Clin, vol. 68, pp. 394–424, 2018.

[3] N. Howlader et al., “SEER cancer statistics review, 1975-2016,”
Bethesda, MD, 2018.

[4] E. Patz Jr et al., “Overdiagnosis in low-dose computed tomography
screening for lung cancer,” JAMA Intern Med, vol. 174, no. 2, pp.
269–274, 2014.

[5] G. Pennazza and M. Santonico, Breath Analysis. Elsevier Science,
2018.

[6] Z. Jia, A. Patra, V. K. Kutty, and T. Venkatesan, “Critical review of
volatile organic compound analysis in breath and in vitro cell culture
for detection of lung cancer,” Metabolites, vol. 9, no. 52, 2019.

[7] Y. Saalberg and M. Wolff, “VOC breath biomarkers in lung cancer,”
Clin Chim Acta, vol. 459, pp. 5–9, 2016.

[8] C. Wang and P. Sahay, “Breath analysis using laser spectroscopic
techniques: Breath biomarkers, spectral fingerprints, and detection
limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.

[9] B. Henderson et al., “Laser spectroscopy for breath analysis: Towards
clinical implementation,” Appl Phys B: Lasers Opt, vol. 124, no. 8,
pp. 1–21, 2018.

[10] R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of
multidimensional data processing approaches for raman and infrared
spectroscopy,” EPJ T, vol. 2, no. 1, 2015.

[11] Picomole Inc., “Breath sampler,” https://www.picomole.com/breath-
sampler, 2020.

[12] T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and
D. Szabra, “Detection of disease markers in human breath with laser
absorption spectroscopy,” Opto-Electronics Review, vol. 24, no. 2, pp.
82–94, 2016.

[13] P. Lasch, “Spectral pre-processing for biomedical vibrational spec-
troscopy and microspectroscopic imaging,” Chemom Intell Lab Syst,
vol. 117, pp. 100–114, 2012.

[14] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of max-dependency, max-relevance and min-
redundancy,” IEEE Trans Pattern Anal Mach Intell, vol. 27, no. 8,
pp. 1226–1238, 2005.

[15] C. Aggarwal, A. Hinneburg, and D. Keim, “On the surprising behavior
of distance metrics in high dimensional space,” in Database Theory

- ICDT 2001, J. Van den Bussche and V. Vianu, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 420–434.

[16] T. Reiman et al., “Analysis of exhaled breath of lung cancer patients
using infrared spectroscopy,” in 2020 ASCO Virtual Scientific Pro-

gram, no. 38, 2020.

1357


