
 

 

 

  

Abstract — The low number of annotated training images and 

class imbalance in the field of machine learning is a common 

problem that is faced in many applications. With this paper, we 

focus on a clinical dataset where cells were extracted in a 

previous research. Class imbalance can be experienced within 

this dataset since the normal cells are in a great majority in 

contrast to the abnormal ones. To address both problems, we 

present our idea of synthetic image generation using a custom 

variational autoencoder, that also enables the pretraining of the 

subsequent classifier network. Our method is compared with a 

performant solution, as well as presented with different 

modifications. We have experienced a performance increase of 

4.52% regarding the classification of the abnormal cells. 

 
Clinical Relevance — We extract images from cervical smears, 

using digitized Pap test. When working with these kinds of 

smears, a single one can contain more than 10,000 cells. 

Examination of these is done manually by going over each cell 

individually. Our main goal is to make a system that can rank 

these samples by importance, thus making the process easier and 

more effective. The research that is described in this paper gets 

us a step closer to achieving our goal. 

I. INTRODUCTION 

The Papanicolaou smear test [1] - also known as the Pap 
test - is a cervical screening method, where cells are collected 
from the outer opening of the cervix. Using special scanners 
(3DHistech Pannoramic 1000), digital images are collected 
from Pap smears. By examining the cells on these smears, an 
early stage of cervical cancer can be detected.   

The cell examination process is an extremely exhaustive 
task, in which cytological experts manually check each cell on 
the extracted smear in order to locate the abnormal ones. As 
such, this is a time-consuming process and consequently an 
expensive task. Our main goal is to develop an automatic 
screening system that can extract the cells on the smears and 
respectively separate them into normal and abnormal classes. 
The main aim of this system is to sort the smears on the basis 
of their severity, using machine learning-based automatic 
screening. In this way, this system will be able to highlight 
those cases where immediate intervention and possible second 
grading are required. This is a challenging task in which we 
are faced with many different difficulties that we overcome 
using our proposed solutions and some machine learning 
methods. 
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The extracted smears may contain over 10,000 cells for 
each patient. The main difficulty is that only a low amount of 
these cells is abnormal in the case of a diseased patient. This 
means that if we want to classify the extracted cells by using 
an approach based on machine learning, the dataset that we use 
for training would be highly imbalanced while also having a 
low number of images. 

When working with machine learning algorithms, the class 
imbalance problem is a difficult obstacle to overcome. 
Generally, an even distribution between classes is preferred 
when considering binary classification. Many solutions were 
proposed for solving this problem, such as oversampling; 
undersampling, and cost-sensitive learning [2]. Furthermore, a 
viable method is to generate synthetic data points for the 
minority class, as also done in [3]. 

In this paper, we address the problem of an imbalanced 
training set and propose a solution, that uses a variational 
autoencoder model in order to generate synthetic, abnormal 
cells, thus balancing out the dataset. The same convolutional 
neural network architecture was used to extract the most 
important features of images at the encoder part of the 
variational autoencoder and to classify the cell images. The 
weights learned from training the autoencoder were also used, 
to initialize the DenseNet classifier network. In this way, we 
overcome the problem of a small training set and managed to 
get a higher classification performance despite the imbalance 
regarding the classes.  

The rest of this article is organized as follows: in the next 
section, we present the available dataset in detail, the required 
preprocessing steps and the specific numerical data for each 
set used in the training and testing process. The following 
section is about the classification of each cell into two classes, 
highlighting the model architecture that we used and the 
training process. After this, we briefly describe the methods 
used to overcome the class imbalance problem. Finally, every 
result is thoroughly presented, finishing with the conclusions 
regarding the proposed methods.  

II. DATASET 

The input data in our case is the digitalized image that has 
been collected using the special microscopes. An example of 
this can be seen in Fig. 1. In our previous work [4], we focused 
on the segmentation of cell groups on these smears. In order to 
achieve that, first, we needed to make smaller, 2,000 x 2,000 
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sized images. Then we used an ensemble system, applying 
methods based on fully convolutional networks [5] and super-
pixel-based segmentation [6]. In this way, we achieved an 
algorithm, which can accurately segment cell regions from the 
input image. In order to make the data more heterogeneous, 
many smears were processed from over 100 patients. Using 
randomly selected outputs of this segmentation, we can focus 
on the classification of each cell into normal and abnormal 
classes respectively. 

In order to build the required dataset, after the histological 
examination of the cells, an annotation process was done by a 
total of 3 experts. Since the number of cell images that we plan 
to annotate is high, every expert received different images to 
make the process less time-consuming. They labeled each 
individual cell into two distinct classes based on whether they 
were normal or abnormal. In this way, a total of 2,527 cells 
were annotated. These are made up of 2,164 normal and 363 
abnormal cells. Before training any model, we split these 
images into training and test sets. The training set consists of 
1,727 normal and 294 abnormal cells, while the test set is made 
of 437 normal and 69 abnormal cells (~20% of the whole 
dataset). The training set was used to train the models, and also 
the test set was used to validate our model and measure model 
performance. Some examples of normal and abnormal cells 
can be seen in Fig. 2. 

III. CLASSIFICATION OF CELLS 

By experimenting with different convolutional neural 
network architectures, we used a model based on the widely 
used DenseNet architecture [7].  Our intention with this 
network is to obtain a benchmark result, meaning that we have 
only used the original dataset for the training process, without 

addressing the problem of an imbalanced dataset. Originally, 
the DenseNet model is used to classify images in 1,000 classes. 
Since in our case a binary classification is needed, we have 
truncated the top layers and attached the following layers to 
the base DenseNet model: global average pooling layer, dense 
layer with 1,024 neurons, ReLU activation function, fully 
connected layer with two output neurons, and softmax 
activation function. The training was done with random weight 
initialization, over 20 epochs, using Adam optimizer with a 
learning rate of 1e-5. 

In order to be able to compare our proposed method with 
existing solutions regarding the dataset imbalance problem, we 
used the DenseNet based network and trained it with a custom 
modified loss function. The widely used cross-entropy loss can 
be customized by adding a weight mask and setting it in a way 
that the network is penalized more when misclassifying 
abnormal cells. For this, we used our own implementation 
based on the Real-World-Weight Cross-Entropy (rwwce) [8], 
which can be described with the following formula:  
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(1) 

where M is the number of training examples. K denotes the 

number of classes, also 𝑦𝑚
𝑘 is the target label for training 

example m regarding class k. ℎ𝜃 stands for the model with 
neural network weights of θ. 𝑥𝑚 indicates the input for 

training example m. 𝑤𝑓𝑛
𝑘  is the cost of a false negative over a 

true positive, and finally 𝑤𝑓𝑝
𝑘,𝑘′

denotes the cost of a false 

positive of class k’ over a true negative, when the true positive 
is k. 

With the goal of further increasing classification 
performance, we propose to balance out the dataset in order to 
make an equal distribution between normal and abnormal 
cells. For this, we used a variational autoencoder [9] trained on 
cells from the training set. This will be elaborated additionally 
in the next section. 

 

Figure 2.  Sample normal images are presented in the first row and 

abnormal in the second one. 

 
Figure 1.  A treatable sized (2,000 x 2,000) sub-image is extracted from the digital smear. 
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IV. SOLUTION FOR THE IMBALANCED DATASET PROBLEM 

Since we have an imbalanced dataset, meaning that we 
have only 294 abnormal and 1,727 normal cells in the training 
set, our goal is to generate synthetic abnormal cell images to 
make them equal to the number of normal cells. The intention 
is to reduce the bias towards the majority class and increase 
classification performance. It is important to note here, that the 
main goal of the screening process is to find all abnormal cells 
in case of the patients. The identification of normal cells is not 
enough to determine whether a patient is healthy or not. 
Keeping this in mind, we are mainly focusing on the 
performance regarding the correct classification of the 
abnormal cells in the test set. Naturally, normal cells cannot be 
neglected, meaning that if we concentrate only on the 
abnormal ones, we could easily manage to find all of them – 
but at a high cost. In the sense that in this case the normal cells 
would be classified with a very low performance, thus 
rendering the result irrelevant.  

For the purpose of synthetic image generation, we have 
used a variational autoencoder-based solution, which is used 
to learn the latent space representation of the cell images. Then 
we sampled a random point from this space, which was 
decoded into a synthetic image afterward. The architecture of 
the model network can be split into two main parts: the 
encoder, and the decoder. In our case, the first part (encoder) 
has the same architecture as the DenseNet model. This is done 
with the aim to pretrain the classification network to overcome 
the problem caused by the low number of training images. 
After encoding the images using this architecture, we can get 
the mean and variance vectors of the latent space. In order to 
maintain the spatial organization of the preceding layer 
outputs, we have slightly modified the traditional variational 
autoencoder architecture: instead of using flatten layers, for 
this, we used two convolutional layers. In this way, we get two 
vectors with the size of 5x5x256. A custom sampling layer was 
then added to the network, which uses these vectors to define 
a latent space and sample a point from it. As the decoder part 
of the network, we use the following block six times: 
convolutional layer, batch normalization, leaky relu, 
upsampling. As the result of the decoder, we have an output of 
the exact shape as the input, meaning that by using the network 
we deconstruct and then rebuild an image, which is based on 
sampling from the learned latent space. We trained the 
network using the training set over 300 epochs. The traditional 
variational autoencoder dual loss function was applied, 
meaning the combination of the reconstruction loss and the 
regularization loss [10].  

After successfully training the variational autoencoder, we 
used it to generate synthetic images. This was done with the 
usage of solely the abnormal cell images from the original 

training set. In this way, we generated 1,433 images that are 
added to the abnormal cells in the training set. Consequently, 
obtaining a balanced dataset that has in total 3,454 images, 
with equal distribution among the classes. Some examples of 
synthetic abnormal images can be seen in Fig. 3. Note that 
these images appear blurry. In order to nullify the potential 
error that this could make (i.e. neural network picking blurry 
images as abnormal), the test set does not have any synthetic 
or blurry data. 

This extended training set was used for training the 
classifier network, which was also fine-tuned with the usage 
of the weights of the encoder part of the variational 
autoencoder. Hopefully, these pretrained weights will provide 
a better starting point than the random initialized ones, so we 
can enhance the classifier network. After the pretrained 
weights initialization, the DenseNet network was additionally 
trained with the custom weighted loss function. 

V. RESULTS 

Each evaluation mentioned in this section was measured 
using the same test set as presented in Section II. The result of 
the overall evaluation can be seen in Table I., where the values, 
regarding the different measurements, mean the average and 
standard deviation derived from 5-fold runs. For the discussion 
of the results, two standard metrics were selected: recall and 
precision. In order to focus on the performance regarding the 
abnormal cells, we also used the balanced accuracy [11] to 
show a complex view about the performance and to avoid 
misleading simple accuracy in case of an imbalanced test set. 
This can be formulated as follows:  

1

𝐶
× ∑
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𝑛𝑖

𝐶

𝑖=1

 (2) 

 

Figure 3.  Generated abnormal synthetic images. 

 

TABLE I.  EVALUATION OF DIFFERENT SETUPS 
 

 
Normal Abnormal Total 

 Precision Recall Precision Recall Balanced Accuracy 

DenseNetorig 0.924 ± 0.005480 0.970 ± 0.007070 0.726 ± 0.041590 0.484 ± 0.053670 0.7150 ± 0.021210 

DenseNetrwwce 0.934 ± 0.008940 0.924 ± 0.020740 0.546 ± 0.047750 0.596 ± 0.054130 0.7580 ± 0.022800 

DenseNetrwwce trained on 

extended dataset 
0.944 ± 0.005477 0.924 ± 0.026077 0.588 ± 0.069785 0.650 ± 0.044159 0.7880 ± 0.028284 

pre-DenseNetrwwce trained 

on extended dataset 
0.954 ± 0.011402 0.888 ± 0.030332 0.602 ± 0.203887 0.750 ± 0.100000 0.8032 ± 0.020729 
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where C is the number of classes, 𝑝𝑖  denotes the number of 
correct predictions of class i, and 𝑛𝑖 stands for the number of 
data items in the dataset for class i. 

As a first scenario, we present the results made by the core 
DenseNet model, using the original dataset, with random 
weight initialization and without the weighted loss function 
(DenseNetorig). This will be used as the benchmark 
performance. As it can be seen, the precision and recall of the 
normal cells are quite high, however, the problem is that the 
abnormal cells are misclassified – as the balanced accuracy 
suggests. The same model was trained with the custom 
weighted loss function according to formula (1) 
(DenseNetrwwce). Based on these results, we can note that the 
weighting method can help to increase performance regarding 
the abnormal class, and balanced accuracy has increased to 
0.7580 from 0.7150. In the meantime, the recall of the normal 
class and the precision of the abnormal class have lowered to 
0.924 and 0.546 respectively. We also present the results of the 
DenseNet model, trained using the extended dataset, where 
synthetic images were also added with the usage of the 
variational autoencoder (DenseNetrwwce trained on extended 
dataset). In this case, we got a higher overall performance: a 
value of 0.7880 balanced accuracy, as well as a higher, 0.650 
value of the recall of the abnormal class.  

Finally, we also comment on the result where we apply 
pretrained weights for the classifier network, meaning that we 
use the weights from the encoder part of the variational 
autoencoder in order to initialize the classifier network. With 
the classifier network fine-tuned in this way and the usage of 
the custom weighted loss function (pre-DenseNetrwwce trained 
on extended dataset), we got the overall best performance with 
a balanced accuracy value of 0.8032. It can also be noted that 
the recall of the abnormal class is the highest in this case with 
a value of 0.750. In order to validate also the different model 
performances regarding the found abnormal cells in the test 
set, confusion matrices are shown in Fig. 4. As it can be seen, 
our proposed solution found the most number of abnormal 
cells.  

VI. CONCLUSION 

In this paper, we have presented a custom generative 
network-based approach to expand the minority class using a 
clinical dataset. We have used a DenseNet based model with 
the original dataset in order to get the benchmark results. 
Furthermore, we have described our method of using a 
variational autoencoder for synthetic image generation 
purposes as well as using the weights from the encoder to fine-
tune the classifier network. We have also done an exhaustive 
testing of different modifications.  

Results show, that using the extended dataset did increase 
the overall performance of the model. Also expanding the 
dataset with synthetic images that were generated using a 
variational autoencoder, together with the custom weighted 
loss function and the fine-tuning method, in which the 
DenseNet classifier is pretrained using the weights from the 
encoder, did significantly improve the results. Overall, this 
method had the best performance, especially regarding the 
abnormal cells of the dataset, which is of most importance 
when dealing with this kind of screening process.  
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Figure 4.  Confusion matrices of all tested methods. 
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