
  

  

Abstract— The number of patients with active implantable 

medical devices continues to rise in the United States and around 

the world. It is estimated that 50-75% of patients with 

conductive implants will need magnetic resonance imaging 

(MRI) in their lifetime. A major risk of performing MRI in 

patients with elongated conductive implants is the 

radiofrequency (RF) heating of the tissue surrounding the 

implant’s tip due to the antenna effect. Currently, applying full-

wave electromagnetic simulation is the standard way to predict 

the interaction of MRI RF fields with the human body in the 

presence of conductive implants; however, these simulations are 

notoriously extensive in terms of memory requirement and 

computational time. Here we present a proof-of-concept 

simulation study to demonstrate the feasibility of applying 

machine learning to predict MRI-induced power deposition in 

the tissue surrounding conductive wires. We generated 600 

clinically relevant trajectories of leads as observed in patients 

with cardiac conductive implants and trained a feedforward 

neural network to predict the 1g-averaged SAR at the lead tips 

knowing only the background field of MRI RF coil and 

coordinates of points along the lead trajectory. Training of the 

network was completed in 11.54 seconds and predictions were 

made within a second with R2 = 0.87 and Root Mean Squared 

Error (RMSE) = 14.5 W/kg. Our results suggest that machine 

learning could provide a promising approach for safety 

assessment of MRI in patients with conductive leads. 

 
Clinical Relevance— Machine learning can potentially allow 

real-time assessment of MRI RF safety in patients with 

conductive leads when only the knowledge of lead’s trajectory 

(image-based) and MRI RF coil features (vendor-specific) are in 

hand.  

I. INTRODUCTION 

Magnetic resonance imaging (MRI) expanding rapidly in 
the indications for a wide variety of neurological, cardiac, and 
musculoskeletal diseases thanks to its non-invasive properties 
and unrivaled soft tissue contrast. However, MRI is not easily 
accessible to a sizeable cohort of patients with conductive 
medical implants, like the cardiovascular implantable 
electronic devices (CIEDs) or deep brain stimulation (DBS) 
systems. The major safety hazard of MRI in patients with 
CIEDs or DBS systems is due to the antenna effect, where the 
electric field of MRI scanner couples with implanted leads and 
amplifies the specific absorption rate (SAR) of radiofrequency 
energy in the tissue surrounding the tip of implanted lead [1-
4]. Full-wave electromagnetic simulations are routinely 
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applied to characterize the interaction of MRI RF fields with 
the human body in the presence of conductive implants to 
quantify RF heating of the implant while accounting for effects 
of MRI coil’s geometry [5-11], implant’s structure, material 
and trajectory [12, 13], as well as patient’s body composition 
[14]. These simulations, however, are notoriously 
cumbersome in terms of computational time and memory 
requirements: even taking advantage of today’s high-power 
computing clusters, it typically takes tens of hours to complete 
a single simulation scenario with enough degrees of 
complexity to provide good agreement with physical 
measurements [15].  

Novel machine learning methods have been recently 
proposed as a paradigm shift in the assessment of MRI RF 
heating. Pioneering work by Chen group has shown that neural 
networks can predict the worst-case heating of orthopedic 
fixation plates in MRI environment when only the knowledge 
of implant’s geometrical features is at hand [16, 17]. In their 
work, however, the implant’s position was predetermined 
within the MRI RF coil and thus, the effect of variation in 
electric field exposure due to changes in implant’s location and 
orientation was not investigated. This is particularly important 
in the assessment of RF heating of elongated conductive 
implants, such as leads in CIEDs, as lead’s trajectory within 
the human body and its orientation with respect to MRI RF 
fields substantially affect RF heating [10, 11, 18-20].  

In this work, we investigated whether neural networks 
could predict the 1g-averaged SAR at tips of implanted leads 
in a human body phantom exposed to MRI RF radiation at 63.6 
MHz (proton imaging at 1.5 T). We created lead models with 
clinically relevant trajectories and positions corresponding to 
what is observed in patients with cardiac pacemakers. We then 
trained a feedforward neural network to predict the maximum 
of 1g-averaged SAR in the tissue surrounding the tip of the 
lead directly from coordinates of points along the lead 
trajectory. The performance of the network is discussed with 
regard to different trajectories. 

II. METHODS 

A. Design of Lead Trajectories 

We generated 600 clinically relevant lead trajectories 
based on the evaluation of thoracic X-ray photographs of  
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Figure 1.  Example of X-ray photograph of a patient with CIED 

overlaid on ANSYS human body model and manual trajectories with 

IPGs on right (A) as well as left (B). 

 

patients with cardiac pacemakers and defibrillators. From 
these, 300 trajectories corresponded to cases where the 
implanted pulse generator (IPG) was in the left pectoral region 
and 300 trajectories corresponded to the IPG in the right 
pectoral region. All trajectories were 58 cm long, similar to 
typical active fixation leads (Medtronic 5076, Medtronic 
4076) and passive fixation leads (Medtronic 4074) for cardiac 
pacing [21]. Lead trajectories were generated in Rhino3D® 
(Robert McNeal and Associates, Seattle, WA) using the 
Grasshopper module. ANSYS human body model (ANSYS 
Human Body Model V3, accessed 2020) [22] was used for 
anatomical guidance. We designed trajectories starting from 
the assumptive position of IPG in left or right pectoral region 
and followed a path through the subclavian vein or superior 
vena cava to the heart. To generalize the model for different 
body forms, the size of the heart was enlarged by 50%. From 
our inspection of patients’ radiographic images, as well as 
reports from other groups [18], we found that the lead 
trajectories in large veins had subtle differences whereas the 
distal part in the pectoral regions and the position of the lead 
tips had significant variation, virtually covering the entire 
heart. These guidelines were incorporated in the algorithm that 
generated lead trajectories as can be observed in Fig. 1. 

B. Numerical Modeling 

Finite element simulations (Fig. 2) were performed to 
calculate the local SAR at tips of implanted lead models during 
MRI RF exposure using ANSYS Electronics Desktop 2019 R2 
(ANSYS, Canonsburg, Pennsylvania, USA). A model of a 
low-pass 16-rung birdcage coil (diameter = 714 mm, length = 
470 mm) was created and tuned to its resonance frequency at 
63.6 MHz corresponding to proton imaging at 1.5 T. The coil 
was loaded with a homogeneous human body model (ANSYS 
Human Body Model V3, accessed 2020) with electric 
properties of average tissue (σ =  0.47 𝑆/𝑚, ϵ𝑟 = 80). Lead 
trajectories were imported from Rhino3D and modeled as 
90%:10% platinum-iridium wires (Pt:Ir, σ = 4 × 106 𝑆/𝑚 , 
diameter = 1 mm) wrapped within urethane insulation ( ϵ = 
3.5, diameter = 2 mm) with 2 mm exposed tip. To increase the 
accuracy of numerical simulations around the lead’s tip, we 
defined a 20 × 20 × 20 𝑚𝑚3 cubic region in which we 
assigned a fine mesh resolution (RMS element length = 1.57 
mm). The input power of the coil was adjusted such that the 
spatial mean of 𝐵1

+ on a transverse plane passing through the 
center of the coil was 2 μT. The maximum of 1g-averaged 

SAR (𝑀𝑎𝑥𝑆𝐴𝑅1𝑔 ) within the high-resolution mesh region 

surrounding the tip was calculated with the HFSS built-in SAR 
module and used as the ground truth to train the neural 
network. 

C. Feedforward Neural Network Architecture 

The total data for 600 trajectories was divided into training 
set (64%), validation set (16%) and testing set (20%). A 
feedforward neural network was designed, which contained 
one input layer, five hidden layers with dropouts and one 
output layer. The x, y, z coordinates of 116 points sampled 
along the length of each lead were first concatenated to 
348  × 1 from 116  × 3 as the input of the neural network. 
The output would be the prediction of 𝑀𝑎𝑥𝑆𝐴𝑅1𝑔 in the cubic 

region surrounding the lead’s tip. Fully connected hidden 
layers activated by ReLU function were used to learn the 
nonlinear relationship between lead coordinates and 
𝑀𝑎𝑥𝑆𝐴𝑅1𝑔. To reduce overfitting and improve generalization 

error [23], a dropout was introduced for each hidden layer. 
Finally, the output layer linearly regressed the predicted 
𝑀𝑎𝑥𝑆𝐴𝑅1𝑔 as one scaler. 

Hyperparameters including the number of neurons, 
learning rate, and dropout rate were tuned by Ray Tune— a 
Python library that accelerates hyperparameter tuning with 
parallelized computing. The search algorithm was Bayesian 
Optimization and Hyperband (BOHB), an algorithm that 
combines Hyperband with Bayesian optimization and is 
dominant in both efficiency and performance [24]. As a result, 
the number of neurons of five hidden layers were optimized to 
256, 128, 128, 128 and 16 respectively (Fig. 3). 
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Figure 2.  (A) Simulation setup in ANSYS HFSS showing 

homogeneous body model and MRI RF coil. The heart is shown to 

visualize the position of distal parts of leads and was not included in 

FEM simulations (B) Overlay of 600 trajectories in the body model 

(C) 1g-averaged SAR on a central axial plane within the 

20 × 20 × 20 𝑚𝑚3cube surrounding the exposed lead’s tip. 

 

 
Figure 3. (A) Concatenation of 3D coordinate. (B) Structure of 

feedforward neural network; 𝑊𝑖  and  𝑏𝑖 represent weight and bias 

matrices for each layer; @ is followed by the number of neurons of 

every layer. 

III. RESULTS 

A. Simulation Results: Convergence 

ANSYS HFSS followed an adaptive mesh scheme where 
an initial mesh with a user-defined resolution (20 mm in 
human body, 2 mm in cubic region, 2 mm in lead’s insulation, 
0.5 mm on lead’s wire, and 10 mm on the coil) was seeded. 
Mesh resolution was enhanced at each adaptive pass until the 
maximum difference between iterative scattering parameters 
fell below a predefined threshold of 0.02. All 600 simulations 
converged within 3 adaptive passes. Table 1 gives the mesh 
statistics for a representative simulation. Each simulation took 
around 90 minutes to complete on a DELL PowerEdge R740 
server with 1.5 TB memory and 2xXenon(R)  Gold 6140 
CPUs each having 18 processing cores. 

TABLE I.  MESH STATISTICS FOR A REPRESENTATIVE SIMULATION 

Parts 
Num of 

Tets 

Min edge 

length 

(mm) 

Max edge 

length 

(mm) 

RMS edge 

length 

(mm) 

Human body 276366 0.30 26.68 12.62 

Cubic region 40625 0.19 2.46 1.57 

Insulation 369495 0.11 2.00 0.58 

Wire 208258 0.03 1.23 0.42 

Coil 38706 9.84 501.79 64.35 

 

Figure 4. Distribution of Simulated 1g-averaged SAR with IPGs in 

right as well as in left pectoral regions. Circles indicate the mean 

values. 

 

B. Simulation Results: SAR Distribution 

Fig. 4 gives the distribution of the normalized 𝑀𝑎𝑥𝑆𝐴𝑅1𝑔 

values for trajectories with IPGs in right and left pectoral 
regions. 𝑀𝑎𝑥𝑆𝐴𝑅1𝑔  was 48.67 ± 14.49 𝑊/𝑘𝑔  and 

113.97 ± 32.28 𝑊/𝑘𝑔 for trajectories with IPG in right and 
left pectoral regions respectively. A one-tail t-test showed the 
𝑀𝑎𝑥𝑆𝐴𝑅1𝑔  of trajectories with IPG in left side to be 

significantly greater ( 𝑝 = 3  ×  10−114 ) than SAR of 
trajectories with IPG in the right pectoral region. 

C. Neural Networks based SAR predictions  

Mean squared error (MSE) was chosen to be the 
optimization target during training. Both training and 
validation losses substantially decreased within 100 epochs 
and converged to ∼ 380 𝑊2/𝑘𝑔2 after 700 epochs (Fig. 5). 
After that, the network started to overfit the training data as the 
gap between validation loss and training loss increased. 
Therefore, the number of epochs for training was set to 700. 
On the test dataset, the Root Mean Squared Error (RMSE) is 
14.5 𝑊/𝑘𝑔, for trajectories with IPGs in right and left pectoral 
regions were 9.2 𝑊/𝑘𝑔 and 18.3 𝑊/𝑘𝑔 respectively. 

Fig. 6 shows the comparison of simulated and predicted 
𝑀𝑎𝑥𝑆𝐴𝑅1𝑔 resulting a relatively high R2 score of 0.87. The 

feedforward network performed better in predicting the 
heating of trajectories with IPGs in right than that in left, but 
the latter still maintained enough linearity in a wider SAR 
range with few outlier predictions. 
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Figure 5.  Training loss and validation loss with increasing epochs 

 

 
Figure 6.  Performance of the feedforward neural network with 

predicted 1g-averaged SAR vs simulated 1g-averaged SAR. The 

coefficient of determination (R2) was relatively high (equals to 0.87). 

IV. DISCUSSION AND CONCLUSION 

MRI is refuted to a sizeable cohort of patients with 
conductive implants because of its safety hazards according to 
the RF-induced heating of tissue surrounding the implant. Pre-
assessment of heating is essential to determine the risk/benefit 
ratio of MRI exams in these patients and is typically performed 
through phantom experiments or full-wave electromagnetic 
simulations both of which being substantially time-
consuming. Machine learning has been recently proposed as a 
promising tool for fast screening and determination of worst-
case heating scenarios of orthopedic implants in MRI 
environment [16, 17]. Here we report results of a proof-of-
concept simulation study to assess the applicability of machine 

learning to predict RF heating of elongated implants, such as 
leads in active electronic devices, during MRI at 1.5 T. We 
tested the hypothesis that a feedforward neural network could 
be trained to predict the local SAR at tips of implanted leads 
when only the knowledge of lead’s trajectory within the MRI 
RF coil and the features of RF coil are at hand. We created 
clinically relevant lead trajectories analogous to what is 
observed in patients with cardiac pacemakers/defibrillators to 
support neural network training. A simple six-layer 
feedforward neural network with hyperparameters tuned by 
Ray Tune was shown to be effective in this heat-predicting 
task as it resulted in a high 𝑅2 score of 0.87 and the RMSE of 
14.5 W/kg on the testing set.  

Classification tasks of neural networks on MRI safety 
topics are the future focus. Besides, only typical 58 cm leads 
were experimented. For more general-purpose, the 
performance of neural networks with leads in different lengths 
and number of sample points need to be discussed further.  
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