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Abstract— Ballistocardiagram (BCG) is a non-contact and
non-invasive technique to obtain physiological information with
the potential to monitor Cardio Vascular Disease (CVD) at
home. Accurate detection of J-peak is the key to get critical
indicators from BCG signals. With the development of deep
learning methods, many researches have applied convolution
neural network (CNN) and recurrent neural network (RNN)
based models in J-peak detection. However, these deep learning
methods have limitations in inference speed and model com-
plexity. To improve the computational efficiency and memory
utilization, we propose a robust lightweight neural network
model, called JwaveNet. Moreover, in the preprocessing stage, J-
peaks are re-modeled by a new transformation method based on
their physiological meaning, which has been proven to increase
performance. In our experiment, BCG signals, including four
different sleeping positions, were collected from 24 subjects with
synchronous electrocardiogram (ECG) signals. The experiment
results have shown that our lightweight model greatly reduces
latency and model size compared to other baseline models with
high detecting accuracy.

I. INTRODUCTION

Ballistocardiogram (BCG) is a measure of repetitive move-
ments of the human body caused by heartbeat and accel-
eration of blood ejected in vessels [1]. Attributed to the
mechanism of BCG, abundant physiological information of
the human body can be obtained from BCG through the non-
invasive and unobtrusive way, which can greatly reduce the
psycho-physiological discomfort of patients.

“I”, “J”, and “K” waves are typical of BCG recordings and
have been proved with clinical significance in cardiovascular
parameters [2]. Especially, the J-wave is the largest head-
ward wave that occurs late in systole. And the most promi-
nent peak in each J-wave is named J-peak, which always
represents the heartbeat as R-peak in ECG. Meanwhile, the
location on J-peaks is also the key to calculate pulse transit
time (PTT) [3]. Therefore, the precise localization of the
J-peak is fundamental to obtain Inter-beat interval (IBI) esti-
mation, heart rate (HR) estimation, cuff-less blood pressure
(BP) monitoring and other physiological information.

In recent years, a large number of deep learning based-
algorithms have been applied in the field of annotation of
specific waves in biomedical signals [4-8]. Most typically,
CNN and RNN methods are widely used to localize the
waves both in ECG and BCG. Some studies have used a
U-Net-like network to annotate ECG waves [4]. Similarly,
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IJK segments in the BCG signal were detected using U-
Net, and the J peaks were found in the maximum of the
IJK probability sequence [5]. To improve the accuracy of
peak detection in noisy data, RPnet, which was adapted
from IncRes-Unet, showed good performance after Distance
Transform (DT) in the different datasets [6]. Additionally,
other studies intended to use RNN-based models for cap-
turing temporal dependencies of ECG or BCG signal and
achieved high accuracy in wave detection tasks [7,8].

However, most deep learning methods aim to improve
the accuracy of peak detection without considering memory
and computational power requirements. Moreover, among
BCG peak detecting tasks using deep learning methods, few
studies have been conducted to verify the effectiveness of
the network models under new individuals. Therefore, it
is uncertain if J-peaks can be detected on new subjects’
BCG signals. Inspired by Mini-Inception-Residual-Dense
(MIRD) Net [9] and Mobilenets [10,11], we proposed a
state-of-the-art lightweight neural network, called JwaveNet,
which improves computational efficiency and saves storage
space while preserving accuracy. In particular, to further
enhance the detecting performance of the lightweight model
in varieties of BCG waves, we build a J-wave model centered
on every J-peak in the preprocessing stage. Finally, J-peaks
will be detected utilizing simple post-processing. The main
contributions are summarized as follows:
• We propose a robust lightweight network model for

detecting J-peak of BCG efficiently and accurately;
• In the process of data preprocessing, a transformation

method based on the physiological meaning of J-wave is
applied to improve the performance of our lightweight
neural network model.

II. METHODOLOGY

A. Data Collection

In this experiment, a polyvinylidene fluoride (PVDF)
piezoelectric bed sensor consisted of 18 channels was used
to acquire BCG signals with a sampling rate of 50 Hz. The
experimental procedures were approved by the Institutional
Review Board. And all volunteers provided informed consent
for participation. At the time of measurement, the sensor was
placed under the mattress, close to the subject’s head. And
the detailed distribution information of the BCG signals on
the 18 channels can be found in [12]. Meanwhile, the exper-
iment was synchronized by the acquisition of ECG signals
with a sampling rate of 500 Hz, representing the ground
truth of J-peak detection. To simulate a real application
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Fig. 1. Model Architecture.

scenario, we collected BCG data from 24 subjects in four
sleeping positions (supine, left side-lying, right side-lying,
and unrestricted position), and it took thirty minutes on each
position with their most comfortable state. Ultimately, a total
of approximately 48 hours of BCG signals with synchronous
ECG signals were collected.

B. Preprocessing

BCG signals acquired by the bed sensor were processed
in the following steps. First, raw BCG signals were filtered
by a seven-order-Butterworth filter with 2-10Hz 3dB cutoff
frequency due to the fact that frequency of respiration com-
ponent is generally lower than 2 Hz; Second, we selected one
in eighteen channels of BCG signal which is approximately
Gaussian as the object of J-peak detection, for BCG with
fewer motion artifacts is more Gaussian distribution [13].
Third, 48 hours BCG signals and synchronous ECG signals
were divided into 20-second segments, and we labeled J-
peaks in BCG with an improved template matching algorithm
[12], while R-peaks in ECG were labeled using the Pan-
Tompkins method [14]. Then, J-peaks were corrected by R-
peaks and checked by two experts. Finally, the Z-score was
adopted to normalize BCG segments, the resulting BCG data
were defined as Xk = {x1,x2,x3, ...,xt}, and J-peaks were
marked as Yk =

{
LJpeak1,LJpeak2,LJpeak3, ...,LJpeaki

}
, where

Xk, Yk are the kth BCG segment and its labels, respectively.
And xt represents the amplitude of normalized BCG at the
tth, while L jpeaki is the location of the J peak at the ith.

Considering that BCG waves vary greatly due to individual
differences, we proposed a transformation method based on
BCG physiological meaning to enhance the J-peak-detecting
ability of the network model. According to analyze the
genesis of BCG waves [2] and the statistics of the width
of the IJK wave in every subject, it could be concluded that
in the state of daily sleep, the width of the IJK wave (I-K
interval) in each healthy individual is almost stable, so we
centered on each J-peak label and roughly restore the J-wave
to form a new label. In this task, we only set the I-J and
J-K intervals to equal lengths. The specific transformation

algorithm of the J-peak label in each heartbeat interval is
shown below:

yt =


xt−(LJpeaki− f T/2)

f T/2 , if LJpeaki− f T/2 < xt6LJpeaki

− xt−(LJpeaki+ f T/2)
f T/2 , if LJpeaki < xt6LJpeaki + f T/2

0, otherwise
(1)

Where f is the sampling rate of BCG signal, T denotes I-K
interval. After the operation, the J-peak label is converted to
Y ′k = {y1,y2,y3, ...,yt}. Finally, the task of the neural network
model is transformed from classifying J-peaks to predict
rebuilding J-waves.

III. MODEL ARCHITECTURE

To maintain the accuracy of new wave prediction with
fewer parameters, we use a shallow symmetric architecture
similar to MIRD-Net, which is composed of downsampling,
upsampling and skip connection. In addition, we cancel the
pooling operation in the downsampling process to alleviate
the loss of information. Based on MIRD-Net, we propose
a lightweight architecture called JwaveNet, which further
increases the computational efficiency. The details of the
architecture are shown in Fig. 1. The main blocks including
Depthwise Separable Convolutions [10], MIRD blocks [9],
and Inverted Residual Blocks [11] will be introduced below.

A. Depthwise Separable Convolution

Depthwise Separable Convolution was proposed in Mo-
bilenetV1 [10], which decomposes a standard convolution
operation into depthwise and pointwise convolutions, where
the depthwise convolution operation filters each feature
channel and the pointwise convolution regroups the features
obtained from each channel. What’s more, suggested by
MobilenetV2 [11], we remove the non-linear ReLU activa-
tion function after pointwise convolution to reduce the loss
of representational features caused by non-linear operations
in low-dimensional space, and the Depthwise Separable
Convolution is shown in Fig.2(a).
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Fig. 2. The detail of Depthwise Separable Convolution (a), Inverted Residual Block
(b) and Mini Inception Residual Dense (MIRD) Block (c). Note that the parameters
in (1,128), (3,128), (1,64), (3,64) and (3,4) represent the kernel size and the number
of output channels, respectively.

B. Inverted Residual Block

The residual structure can fuse the feature information of
the previous layer with the feature information of the current
layer, which effectively alleviates the problem of gradient
disappearance and overfitting. Different from the residual
structure, in the inverted residual block illustrated in Fig.2(b),
the depthwise separable convolution is used to extract the
high-dimensional information more efficiently, and features
in narrow layers are kept in a linear way.

C. Mini Inception Residual Block

MIRD Block is a high-performance block shown in
Fig.2(c), embedded Residual Block and Dense Block in
inception architecture, which can alleviate the performance
degradation caused by reduced network layers. Especially,
inception architecture enables the network to acquire the
features of BCG waves at different levels and enlarge the
Receptive Field of the network. Moreover, Dense Block
connects the current network layer to all previous layers,
multiplying features of BCG waves that the network learned
in the previous layer. Finally, the output is obtained by
Residual operation. The number of feature channels in the
MIRD Block is set to 4 or 64 to minimize parameters, and
the kernel size of convolutions is 1 or 3 followed by Batch
Normalization, ReLU activation.

D. Post-processing

The lightweight network finally outputs a re-modeled J
wave with a length of 20 seconds (same as the input length
of BCG). Besides, to locate the J peaks on the J waves, we
find all local maxima by a simple comparison of neighboring
values with a minimal distance criterion.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

After removing obvious-motion-artifacts data that heart-
beats could not be recognized by synchronous ECG, we got
6179 segments from 24 subjects. In order to prove that our
network can achieve high accuracy in the J-peak detecting
task of new subjects, we chose 1000 segments from randomly

4 subjects for training with 5-fold cross-validation. And other
20 subjects’ 5179 segments were used as a test set.

In all experiments, we used the MSE loss function and
Adam optimizer [14] with the batch size 10 over 100 epochs.
The learning rate in training is 0.001 and the decay rate of
learning rate is 0.1 after 20 epochs. All models were trained
on a computer with Intel(R) Core (TM) i7-7700 CPU @
3.60 GHz, Nvidia GeForce GTX 1080 Ti, 16 GB RAM, and
Samsung SSD 850 EVO 500GB. All experiments were run
under the Pytorch 1.6.0 version.

B. Evaluation Metrics
The performance of J-peak detecting is evaluated by the

precision, recall and F1 score, as shown below:

recall =
T P

(T P+FN)
,

precision =
T P

(T P+FP)
,

F1− score =
2 ·Precision ·Recall
Precision+Recall

(2)

where TP represents ground truth with a tolerance of 75ms,
FP is the J-peaks detected out of the tolerant area of true
peaks, and FN is the condition of failure to detect J-peaks
during the permitted neighborhood.

In addition, mean absolute error (MAE) was used to
evaluate the HR and IBI calculated through detected J-peaks.
To measure the inference speed, running latency in the test
set was calculated on both the central processing unit (CPU)
and graphics processing unit (GPU). And the number of
parameters was used to evaluate the model size.

C. Result
We compared our JwaveNet with RPNet [6], U-Net [15],

shallower U-Net with 8 convolutional layers (U-Net-8), and
MIRD-Net [9]. Additionally, we contrast the DT method
used in [6] during preprocessing stage (Ours-DT) with the
J-wave-transformation method proposed by us. As shown
in Table I, JwaveNet with the new transformation method
achieved a high F1-score of 0.9719, and MAE of IBI and
MAE of HR are 9.32±1.89ms and 0.71±0.16bpm, respec-
tively. Meanwhile, it is obvious that JwaveNet with the
new transformation method has 3.6% higher F1-score while
reducing MAE of IBI and HR by 22.81ms and 2.85bpm
compared to the DT method (Ours-DT). This greatly proved
our new transformation method is more suitable in the J-peak
detection task.

Besides, Table II shows our model has a minimum number
of parameters and high inference speed among the five
models. Compared with RPnet and U-Net, our network
model, with no discernible difference in accuracy, has the
parameters of only 3 / 1000 of IRD-Net and 3 / 200 of U-
Net. In terms of the inference time, it took about 1.09s to
process 5179 test segments (124597 beats) on GPU, while
it took 62.32s on CPU. Namely, our model took only about
0.5ms to process a beat on CPU, which is approximately
184% faster than RPnet, 52% faster than U-net and 16%
faster than MIRD-Net with comparable accuracy.
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TABLE I. Comparison of performance using different methods.

Methods Recall Precision F1-score IBIMAE
(ms)

HRMAE
(bpm)

RPNet 0.9835 0.9876 0.9855 7.30±1.36 0.56±0.08
U-Net 0.9755 0.9819 0.9787 8.48±1.07 0.70±0.05

U-Net-8 0.9431 0.8955 0.9186 89.32±12.43 7.68±3.36
MIRD-Net 0.9545 0.9702 0.9623 9.80±3.56 0.77±0.33
Ours-DT 0.9342 0.9375 0.9358 32.13±8.58 3.56±1.82

Ours 0.9657 0.9782 0.9719 9.32±1.89 0.71±0.16

TABLE II. Comparison of parameters and latency in different methods.

Methods RPNet U-Net U-Net-8 MIRD-Net Ours

Parameters(×106) 52.15 11.13 0.37 0.26 0.17
Latency in GPU(s) 4.92 2.68 0.66 1.42 1.09
Latency in CPU(s) 176.23 94.79 24.77 78.56 62.32

V. DISCUSSION

Table I and Table II demonstrate that our model can
accurately locate J-peaks in the test set with lower latency
and fewer parameters. In detail, RPnet and U-Net can detect
J-peaks accurately. However, due to the high latency and the
large memory size, these two models are not suitable under
practical implementation. When the number of convolutional
layers of U-Net decreases to 8, the recall of the efficient U-
Net-8 is less than 0.9, resulting in a poor distinction between
J-peaks and adjacent peaks even with good data quality. It is
worth noting that MIRD-Net can balance the accuracy and
efficiency when detecting J-peaks. This is due to multi-level
features are obtained by MIRD-Block. In addition, it can be
concluded that detecting performance is further improved by
the proposed model using the lightweight strategy. As shown
in Fig.3, we observed that the network can still accurately
locate J-peak even under slight artifact movement, which
demonstrates the robustness of our model.

Fig. 3. An example of accurately locating J-peak in slight body movements.

VI. CONCLUSION

To the best of our knowledge, no study has ever used a
lightweight deep learning framework for the J-peak detec-
tion of BCG. We take the advantage of fewer parameters
and higher segmentation accuracy of MIRD-Net to detect
J-peak efficiently. Based on MIRD-Net, we replace the

standard convolution with lightweight depthwise separable
convolution, add inverted residual blocks and remove the
non-linearities in the narrow layers. In order to reduce the
influence of individual differences on J-peak detection, we
use an elegant transformation method to simulate the J-
wave. This detection method achieves a high F1 score in
new individuals and can detect J-peak under slight body
movement. In the future, our research will focus on BCG
J-peak detection of patients with cardiovascular disease, and
our lightweight strategy will be applied to other neural
network structures of the peak-detection task.
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