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Abstract— Cell individualization has a vital role in digital 

pathology image analysis. Deep Learning is considered as an 

efficient tool for instance segmentation tasks, including cell 

individualization. However, the precision of the Deep Learning 

model relies on massive unbiased dataset and manual pixel-level 

annotations, which is labor intensive. Moreover, most 

applications of Deep Learning have been developed for 

processing oncological data. To overcome these challenges, i) we 

established a pipeline to synthesize pixel-level labels with only 

point annotations provided; ii) we tested an ensemble Deep 

Learning algorithm to perform cell individualization on 

neurological data. Results suggest that the proposed method 

successfully segments neuronal cells in both object-level and 

pixel-level, with an average detection accuracy of 0.93. 

I. INTRODUCTION 

Lack of information about neuron population, distribution 
and morphology at cell level has existed as a critical problem 
for the study of brain development and aging for many years. 
Traditionally, neurobiologists estimate manually the number 
of neurons in the region of interest. However, this method is 
tedious and subjective because its accuracy relies on the 
complexity of images. Several automated cell 
individualization methods have been proposed such as 
Watershed [1] and iCut [2]. However, these methods have 
several limitations. Watershed algorithm can be easily 
affected by noise in the images, often resulting in over- and 
under-segmentations. The iCut algorithm proposed to segment 
touching cells, fails in the regions where massive cells 
aggregate, and does not take into account size-varying cells 
such as neurons. Recently, the development of Deep Learning 
(DL) has revolutionized computer vision. Integrating DL 
models in cell detection and cell instance segmentation 
improves accuracy compared to traditional approaches [3-6]. 
To achieve robust and rigorous segmentation, a large training 
dataset is mandatory. However, pixel-level annotation is 
laborious and time consuming. In addition, aforementioned 
methods are designed mainly for analyzing oncological data, 
in particular H&E staining, whereas in neuroscience, the study 
of neurons usually relies on NeuN staining. Moreover, the task 
of neuron segmentation is extremely challenging due to the 
variety in neuron shape, size and density in the brain.  To the 
best of our knowledge, few studies have specifically 
investigated cell individualization for neurons [7]. 

In this paper, we propose a weakly supervised DL method 
for neuron instance segmentation, which requires only point 
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annotations. The main contributions of this work are as 
follows: i) inspired by [7], we developed a new strategy to 
synthesize pixel-level labels using Random Forest (RF) 
segmentation and a competitive Region Growing algorithm; 
ii) we tested different configurations of DL networks on NeuN 
stained images. The DL architecture used in this work is 
Topcoders, which ranked first during the nucleus 
segmentation competition: Data Science Bowl 2018 (DSB) 
and demonstrated promising performances on H&E staining 
images and fluorescent images stained with DAPI and 
Hoechst [8] and iii) by employing an overlapping patch 
extraction/assembling method [4], we were able to process 
large high-resolution images despite the limitation of GPU 
random access memory (RAM).   

II. MATERIALS AND METHODS 

A. Dataset 

Dataset was derived from a previously published study [7], 
a representative histological section with thickness of 40 μm 
was obtained from a healthy macaque brain and scanned by an 
AxioScan.Z1 (Zeiss) with the resolution of 0.22 μm/pixel (×20 
magnification) (~150 GB). Based on 30 images of 5000 × 
5000 pixels, 24 images were chosen to create the training 
dataset including 11k patches (224 × 224 pixels), 6 other 
images were chosen as the test dataset. The datasets contained 
the main anatomical regions where the neuron distribution is 
investigated including cortex, hippocampus, caudate, etc. The 
datasets presented a rich diversity in terms of neuron shape 
and size, with both sparse and highly aggregated neuron 
distributions, as illustrated in Fig. 1.  

B. Pipeline of pixel-level label synthesis  

Traditionally, cell instance segmentation is addressed as a 
binary classification problem, the output of the classifier 
contains two classes: cells and tissue background. Recent 
works indicate that a more accurate segmentation can be 
achieved by classifying pixels into three classes: inter-cell 
contours, interior of cells and background [8]. We designed an 
algorithm for constructing pixel-level labels including these 
three classes, based on centroid point labels provided by the 
expert for each neuron and binary semantic segmentation 
results produced in previous works [7] (as shown in Fig. 2). i) 
The binary segmentation of neurons and background was 
generated by applying a RF model of 100 decision trees, 
which was trained and optimized with following features: H, 
S, V color channels and local intensity [7]. ii) Manually 
pinpointed centroid labels were identified by an expert, a disk 
with a radius of 5 pixels in the center of the neuron was 
marked as a point label (size and form adapted to visual 
checking and region growing initialization). iii) A competitive  
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Figure 1.   Training dataset examples: (a) caudate, (b-c) cortex, (d) 

hippocampus, (e) subiculum and (f) thalamus. 

 

region growing process was applied to define pixel-level 
labels, the expansion of sub-region was constrained using the 
segmentation result of RF. Each pixel inside the neuron had 
the same label as its centroid. By applying the contours 
generated by region growing on raw image (Fig. 2 (d)), we 
visually assessed the quality of synthesized labels; iv) based 
on the pixel-level labels, three-classes masks were generated 
using morphological operations, including background, 
neurons and the border of touching neurons (thickness of 4 
pixels), which is proved to enhance the segmentation result 
[8]. 

C. Neural network architecture  

We applied the winner algorithm of the 2018 Data Science 
Bowl [8], an ensemble model of 8 U-Net-like encoder-decoder 
architectures, with encoders pretrained on ImageNet database, 
including three ResNets (34, 101, 152) [9], two Dual Path 
Networks (DPN) 92 [10], two DenseNets (121, 169) [11] and 
one Inception-ResNet [12]. Such strategy also enabled us to 
compare the performance of the different neural networks 
individually and to evaluate the effectiveness of the entire 
model. Pretrained model derived from DSB 
(Topcodersbowl) [8], model trained on the neuron dataset 
(Topcodersneuron) and its constituents (8 models) were all 
tested. Training dataset was randomly divided into two groups 

(¾ and ¼) for training and validation respectively. A heavy 

data augmentation was applied to prevent over-fitting, 
including rotation, flipping, channel shuffling, color inversion, 
etc. The training set was expanded to 6 times compared to its 
original size. Once the training of DL models was 
accomplished, a post-processing step aiming to optimize the 
segmentation results was applied: a regression model 
(gradient-boosted trees) was trained to predict 
Intersection-over-Union (IoU) for all cell candidates, 
candidates with small predicted I oU (< 0.3) were removed in 
order to decrease false predictions.  

D. Overlapping extraction & assembling 

The test dataset contained 6 large high-resolution images 
(5000 × 5000 pixels) which included various anatomical 
regions. However, most DL based segmentation algorithms 
cannot process such large-scale images due to GPU RAM 
limitation. Moreover, one constraint of CNN is that the  

 

 

 
Figure 2.  Flowchart of pixel-level label synthesis: (a) raw image, (b) RF 

segmentation, (c) point labels, (d) region growing result (red contours) and 
(e) synthesized masks (black: background, blue: neurons and green: 

inter-cell contours). 

 

prediction at the border of the input image is not accurate due 
to the lack of context information. To address this problem, we 
adopted the strategy of overlapped patch extraction and 
assembling proposed in [4]. The patches were extracted from 
raw images by a sliding window of 1340 × 1340 pixels 
(determined according to the GPU RAM resources), a stride of 
1220 pixels in height and width produced an overlap of 120 
pixels. The prediction results of patches were seamlessly 
stitched to reconstruct the final result (5000 × 5000 pixels) 
using the same settings as well as a weight map, which was 
applied to each predicted patch so that the pixels closer to the 
edge of the patch have lower weights. The use of the weight 
map reduced the impact of inaccurate prediction of pixels at 
the border of the patches. 

E. Evaluation metrics 

To evaluate the proposed method, we computed F1 score 
(F) for both detection (det-F1) and instance segmentation 
(seg-F1) tasks: 

 

where True Positive (TP), False Positive (FP) and False 

Negative (FN) represent the numbers of true, false and 

missing detection/instance segmentation respectively. For the 

detection task, a neuron detected was considered as a true 

positive when it was superimposed with exactly one centroid 

defined by the expert. As for the instance segmentation, the 

true positive was defined as the IoU greater than 0.5 between 

the detected neuron and the corresponding label.  
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Dice coefficient was calculated to evaluate the semantic 

segmentation. Another evaluation criterion was the relative 

count error (RCE): 

 
Where Na, Ne are the number of neurons detected by the 

proposed method and the expert respectively. 

F. Training details 

Models were trained using PyTorch, Keras and 
Tensorflow frameworks. Each model needed different epoch 
number to converge (from 17 to 70 depending on network 
depth), with Adam optimizer and a starting learning rate of 
1e-4 which decreased during the training. DL models with 
ResNet101, ResNet152 and one of DPN encoders used 
sigmoid activation, the other models used softmax activation. 
For loss calculation, the combination of soft dice and binary 
cross-entropy/categorical cross-entropy was chosen for 
sigmoid/softmax activation respectively. 

This work was conducted on a workstation equipped with 
bi-processors (operating system: Ubuntu 16.04 LTS 64-bits, 
CPU: Intel Xeon E5-2630 v3 at 2.4 GHz, RAM: 128 GB, 
GPU: NVIDIA GTX 1080Ti). 

III. RESULTS 

The results of Topcodersbowl, Topcodersneuron and its 
constitutive models (named according to the encoder network) 
were evaluated on a test dataset including ~16k neurons. Table 
1 reports the performance of neuron detection (det-F1), 
instance segmentation (seg-F1), semantic segmentation (Dice) 
and neuron counting (RCE).  

Although the training dataset of Topcodersbowl did not 
include neuron data, it was able to detect most neurons 
correctly (det-F1 score of 0.83 and RCE of 0.22). 
Nevertheless, it performed less well in both instance (seg-F1: 
0.71) and semantic (Dice: 0.75) segmentation. A significant 
improvement of 10% was obtained by training with NeuN 
stained data. Topcodersneuron achieved the highest detection 
accuracy (det-F1: 0.927), it was also one of the best models for 
instance segmentation (seg-F1: 0.87). Among the constitutive 
models, ResNet101 outperformed others in neuron detection 
(det-F1: 0.926) and counting (RCE: 0.037). DPN softmax was 
the best model for instance and semantic segmentation 
(seg-F1: 0.88 and Dice: 0.95), followed by ResNet34 (seg-F1: 
0.87 and Dice: 0.93).  

To better compare the performance of each model, the 
detection accuracy (det-F1) distribution of the 10 models are 
plotted in Fig. 3.  Topcodersneuron, which had the best average 
detection accuracy on the test dataset, was also one of the most 
robust models, it performed well for all tested anatomical 
regions. The best constitutive model, ResNet101, was also 
robust, whilst it performed less well for most tested 
anatomical regions than Topcodersneuron. 

Fig. 4 shows cropped examples of synthesized masks and 
segmentation results in three anatomical regions. Neurons are 
presented by colored labels. The results are displayed 
according to an increasing density of neurons (first row: 
caudate, sparse; second row: cortex, dense and last row: 
hippocampus, very dense). For better illustrating the results,  

TABLE I.   

DETECTION AND SEGMENTATION PERFORMANCE OF TOPCODERSBOWL, 
TOPCODERSNEURON AND ITS CONSTITUTIVE MODELS. BEST AND SECOND BEST 

RESULTS ARE IN BOLD WITH THE BEST ALSO UNDERLINED. 

 

 

Figure 3.  Comparison of detection performance (det-F1) on the test set 

(several outlier values are below the vertical scale range). 

 

 
Figure 4.  Results of pixel-level label synthesis and segmentation in three 
anatomical regions. Top row: caudate; Middle row: cortex; Bottom row: 

hippocampus. (a) Raw images, (b) manual segmentation, (c) synthesized 

pixel-level masks and (d, e) results of Topcodersbowl and Topcodersneuron 
respectively.  

 

the neurons in these regions were segmented manually, as 
shown in Fig. 4 (b). Fig. 4 (c) shows the synthesized 
pixel-level masks, compared to the manual annotations, the 
proposed method produced satisfying masks for most regions 
(both in distribution and shape based on visual evaluation). 
Fig. 4 (d) illustrates the results of Topcodersbowl, the neurons 
were correctly detected in the sparse regions, but the contour 

 

Model     det-F1 seg-F1 Dice RCE 

Topcodersbowl 0.825 0.705 0.751 0.219 

Topcodersneuron 0.927 0.870 0.928 0.040 

C
o
n

si
ti

tu
en

ts
 

DenseNet121 0.910 0.783 0.830 0.063 

DenseNet169 0.912 0.839 0.869 0.062 

DPN sigmoid 0.869 0.803 0.885 0.130 

DPN softmax 0.918 0.880 0.951 0.059 
Inception-ResNet 0.901 0.848 0.910 0.116 

ResNet34 0.914 0.870 0.934 0.088 

ResNet101 0.926 0.868 0.921 0.037 

ResNet152 0.923 0.865 0.923 0.038 
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of neurons were often distorted. Moreover, the region of 
massive touching neurons was wrongly considered as the 
background. Fig. 4 (e) presents the predictions of 
Topcodersneuron, it was a solid model performing very well for 
all tested anatomical regions, at both object-level and 
pixel-level.  

IV. DISCUSSION 

Topcodersbowl was believed to be a well generalized model 
based on DSB 2018 results. It successfully separated neurons 
in regions with sparse distribution while it did not respect the 
neuron shape and it failed in regions where massive neurons 
aggregated. This is probably due to the absence of cells with 
various forms and highly clustered distribution such as 
neurons in the dataset of DSB.  

The performance of Topcodersneuron demonstrated the 
superiority of the ensemble model. Although the results of 
Topcodersneuron were obtained by combining the predictions of 
the constitutive models, it achieved better results than most 
constituents for all the tasks.  

Among all the constitutive models, all ResNet backbone 
models performed well, including ResNet34, the best model 
for semantic and instance segmentation, and ResNet101, the 
best constitutive model for neuron detection. Generally, a 
deeper network can capture more complex features. While the 
deepest model ResNet152 did not achieve the best 
performance in any task, it might be related to the fact that 
deeper networks are generally more difficult to train owning to 
the vanishing gradient problem [13]. Another interesting 
finding is that the choice of activation had an important 
influence on segmentation results. Although two DPN models 
had exactly the same architecture, the one with softmax 
activation performed better than that with sigmoid activation.  

Since most tested neural networks achieved good results, 
we believe that it is feasible to apply DL techniques for neuron 
counting. However, compared to stereology [14], which takes 
into account the thickness of tissue for possible 
superimposition of cells and provides unbiased 
quantifications, DL methods can only deal with 2D images 
and provide a valuable estimation of cell counting. A specific 
dataset and study need to be designed to quantify 
discrepancies between DL methods and stereology. 

V. CONCLUSION 

In this work, we investigated the ability of a weakly 
supervised method to specifically detect and segment neurons 
in NeuN stained histology images. By applying 
state-of-the-art DL architectures, this study provides the first 
comprehensive assessment of different neural networks for 
neuron individualization. An optimal model trained using 
neuron data was obtained, it was able to separate size, shape 
and density-varying neurons successfully. Experimental 
results in the main anatomical regions demonstrated the 
effectiveness of the proposed method against the default DSB 
model. The current study was carried out with the default 
settings, further optimization in training parameters and 
architecture need to be investigated. Besides, developments in 
high-performance computing (HPC)† are also ongoing to test 
the efficiency of cross-validation. Further work is required to 

establish a comparative analysis of Topcoders and other deep 
learning-based instance segmentation methods, as well as 
stereology – the reference method used in biomedical analysis. 
An exciting perspective will be to extend this study to whole 
sections and brains, which will improve our understanding of 
brain development, aging and neurodegeneration.  

COMPLIANCE WITH ETHICAL STANDARDS 

The experimental procedures involving animal models 
described in this paper were approved by the Institutional 
Animal Care and Ethics Committee. 

ACKNOWLEDGMENT 

†This work was granted access to the HPC resources of 
TGCC under the allocation 2019-(A0040310374) made by 
the GENCI. 

REFERENCES 

[1] J. Cousty, et al., "Watershed cuts: Minimum spanning forests and the 

drop of water principle," IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 31, no. 8, pp. 1362-1374, 2008. 

[2] Y. He, et al., "iCut: an integrative cut algorithm enables accurate 

segmentation of touching cells," Scientific Reports, vol. 5, no. 1, pp. 

1-17, 2015. 

[3] T. Falk, et al., "U-Net: deep learning for cell counting, detection, and 

morphometry," Nature Methods, vol. 16, no. 1, pp. 67-70, 2015. 

[4] Y. Cui, et al., "A deep learning algorithm for one-step contour aware 

nuclei segmentation of histopathology images," Medical & Biological 

Engineering & Computing, vol. 57, no. 9, pp. 2027-2043, 2019. 

[5] P. Naylor, et al., "Segmentation of nuclei in histopathology images by 

deep regression of the distance map," IEEE Transactions on Medical 

Imaging, vol. 38, no. 2, pp. 448-459, 2018. 

[6] N. Kumar, et al. "A dataset and a technique for generalized nuclear 

segmentation for computational pathology," IEEE transactions on 

medical imaging, 36.7 (2017): 1550-1560. 

[7] Z. You, et al., "Automated Individualization of Size-Varying and 

Touching Neurons in Macaque Cerebral Microscopic Images," 

Frontiers in Neuroanatomy, 13:98, 2019. 

[8] J. C. Caicedo, et al., "Nucleus segmentation across imaging 

experiments: the 2018 Data Science Bowl," Nature Methods, vol. 16, 

no. 12, pp. 1247-1253, 2019. 

[9] K. He, et al., “Deep residual learning for image recognition,” IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 

2016 

[10] Y. Chen et al. “Dual path networks,” Conference on Neural 

Information Processing Systems (NIPS), 2017. 

[11] G. Huang et al. “Densely connected convolutional networks,” IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 

2017 

[12] C. Szegedy et al. "Inception-v4, inception-resnet and the impact of 

residual connections on learning." Proceedings of the AAAI Conference 

on Artificial Intelligence. Vol. 31, No. 1, 2017. 

[13] M. Tan, and V. L. Quoc, "EfficientNet: Rethinking model scaling for 

convolutional neural networks." International Conference on Machine 

Learning (ICML), 2019. 

[14] M. J. West, et al., "Unbiased stereological estimation of the total 

number of neurons in the subdivisions of the rat hippocampus using the 

optical fractionator," The Anatomical Record, vol. 231, np. 4, pp. 

482-497, 1991. 

 

 

  

2988


