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Abstract— Electroencephalogram (EEG) is a crucial tool in
the diagnosis and management of epilepsy. The process of
analyzing EEG is time consuming leading to the development
of seizure detection algorithms to aid its analysis. This ap-
proach is limited since it requires seizures to occur during
monitoring periods and can often lead to misdiagnosis in cases
where seizure occurrence is rare. For such cases, it has been
shown that the interictal periods in EEG signals, which is the
predominant state in long-term monitoring, can be useful for
the diagnosis of epilepsy. This paper presents an algorithm,
using the information in interictal periods, to discriminate
between long-term EEG recordings of epilepsy patients and
healthy subjects. It extracts several time and frequency-time
domain features from the signals and classifies them using
an ensemble classifier, achieving 100% sensitivity and 98.7%
specificity in classifying 267 recordings from 105 subjects. The
results demonstrate the feasibility of this approach to reliably
identify EEG recordings of epilepsy subjects automatically
which can be highly useful to facilitate screening and diagnosis
of epilepsy, especially in those parts of the world where there
is a lack of trained personnel for interpreting EEG signals.

I. INTRODUCTION

Epilepsy is a chronic condition that affects the brain and
is characterized by the occurrence of, often debilitating,
seizures [1]. It is diagnosed by monitoring the electrical
activity of the brain by placing electrodes on the scalp
to obtain the electroencephalogram (EEG). This is usually
performed in hospitals, where trained staff are able to provide
assistance and document seizures as and when they happen.
The randomness and unpredictable nature of seizures makes
it very difficult to record them during the limited-time
EEG monitoring. Hence, in some cases, patients are sent
home with ambulatory EEG recording units to increase the
likelihood of capturing seizure events.

To help with the diagnosis and management of epilepsy,
wearable EEG systems are being developed for long-term
monitoring of patients [2], [3]. While providing more con-
text, such systems result in significantly large amount of
recording data that need to be analyzed. Manual analysis
of this data for the identification of epileptic activities is
extremely time consuming as the predominant state is the
interictal (between seizure) period. Algorithms for detecting
seizures have been developed, to reduce the analysis time
and aid epileptologists by preselecting only the regions of
interest in the EEG signals for review [4], [5], [6]. Such
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algorithms are known to have accuracy issues in patients
with sporadic seizures where they are likely to miss detection
of seizures or end up with large number of false positives,
and can consequently lead to misdiagnosis. This can have
serious implications on the person, such as increased costs
associated with unnecessary prescriptions of antiepileptic
drugs (AEDs), restrictions imposed on their normal, work
or school lives, and in some cases, being subjected to highly
invasive methods for further investigation [7].

While wearable EEG can help to collect significant amount
of data, it is also possible for patients not to have any
seizures during the period of long-term recording. Despite
the absence of seizures, EEG data from epilepsy patients
are more likely to contain interictal epileptiform discharges
(IEDs) [8], which can be characteristic of epilepsy and thus
can be useful for clinicians to analyze. There is therefore
a need for an objective method to automatically identify
such EEG recordings that can then be used for further
investigations of epilepsy [9]. Such a tool would be a useful
tool for clinicians to automatically identify recordings that
need more attention without spending hours on manual
analysis of recordings from healthy subjects. Additionally, it
would facilitate screening and diagnosis of epilepsy in parts
of the world where there is a lack of trained personnel for
interpreting EEG signals. This paper presents an algorithm to
discriminate between long-term EEG recordings of epilepsy
patients and healthy subjects. It is organized as follow.
Section II describes the two datasets used in this paper
for the development and validation of the algorithm. Sec-
tion III presents the algorithm developed, which was based
on machine learning, to differentiate between scalp EEG
recordings of patients with epilepsy and healthy subjects.
In Section IV, the performances of the algorithm and the
underlying machine learning classifier are evaluated. Finally,
the discussions and conclusion are presented in Section V.

II. MATERIALS

For the development and validation of the algorithm, two
datasets were used in this work. The first, sleep-edfx, was a
publicly available dataset containing scalp EEG recordings
from healthy subjects with no epilepsy. The second, NHNN,
was an anonymized dataset containing EEG recordings from
epilepsy patients. A summary of the number of subjects and
recording duration in each dataset is shown in Table I.

A. Sleep-edfx

The sleep-edfx database [10], [11] on Physionet [12]
consists of data from two studies: sleep cassette and sleep
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TABLE I
SUMMARY OF THE DATASETS USED IN THIS WORK

sleep-edfx NHNN

Number of subjects 78 27
Number recordings 153 116
Total recordings dura-
tion (hours)

3470 1362.5

telemetry. Only data from the sleep cassette study were used
in this work, since test subjects in the sleep telemetry study
took a medication used in treating insomnia. Subjects in
the sleep cassette study were monitored using an ambu-
latory EEG system (four-channel cassette recorder), for a
period lasting two days (approx. 48 hours recording). The
recordings were obtained using the Fpz-Cz and Pz-Oz EEG
montages with a sampling frequency of 100 Hz. In this
dataset, the total number of subjects is 78 (M:37, F:41), the
median age of subjects is 57 years (range: 25 – 101), and
the total recording duration is 3470 hours.

B. NHNN

The NHNN dataset is an anonymized research database
that was created as part of a study carried out at the National
Hospital for Neurology and Neurosurgery (NHNN), London,
United Kingdom (approved by the UK Health Research
Authority, REC reference number 16/WA/0319). It contains
scalp EEG recordings from 27 patients (M:13, F:14) with
focal epilepsy. The median age of the patients is 32 years
(range: 20 – 53), and the total recording duration is 1362.5h.
Of the 27 patients in the database, 14 of them had at least one
seizure that occurred during the monitoring period. Although
the EEG was obtained with 30 channels, only signals from
Fz-Cz montage were used as this corresponded to the closest
location available in the sleep-edfx dataset.

III. METHODS

A high-level overview of the proposed algorithm is shown
in Fig. 1. It consists of the following stages: data preprocess-
ing, feature extraction, and classification, which are described
in this section.

A. Data preprocessing

EEG signals from the Fz-Cz montage of both datasets were
bandpass filtered in the range of 0.16 Hz and 45 Hz, using a
6th order Butterworth filter, to eliminate any high frequency
interference that were captured. Since the recordings in the
NHNN dataset were recorded at a sampling frequency of
256 Hz, they were resampled to 100 Hz to match those
in the sleep-edfx dataset. After the filtering and resampling
steps, the EEG recordings were split into 2s non-overlapping
epochs for further processing.

B. Feature extraction

Several features based on the time domain (TD), Fourier
transform (FT) and the discrete wavelet transform (DWT)
were extracted from each 2s epoch. These features were
explored to determine which ones are relevant using the

Fig. 1. A high-level overview of the proposed algorithm.

minimum redundancy maximum relevance (mRMR) feature
selection algorithm [13]. A list of the features extracted is
shown in Table II. They are based on those used in [14],
to characterize EEG signals, and subsequently, to detect the
onset of seizure. The equations for the calculation of these
features are available in [15].

The TD features were calculated directly from the 2s
signal epochs. Fourier transform was applied to the signals
before FT features were calculated. The DWT features were
calculated using the Daubechies 4 (‘db4’) wavelet, and a
four-level decomposition was used. This results in details
coefficients (cD) in four frequency bands (cD1, cD2, cD3,
and cD4) and approximation coefficients (cA) in one fre-
quency band (cA4), which correspond to frequencies in the
range of 25–50 Hz, 12.5–25 Hz, 6.25–12.5 Hz, 3.125–6.25
Hz, and 0–3.125 Hz respectively.

TABLE II
FEATURES EXTRACTED FROM EEG RECORDINGS

Method Extracted features

Time domain
(TD)

Complexity, energy, fractal dimension,
minimum, maximum, mean, variance,
skewness, kurtosis, line length, mobil-
ity, non-linear energy, relative deriva-
tive, Shannon entropy, total local max-
ima and minima, zero crossing, first
derivative of zero crossing

Fourier transform
(FT)

Median frequency, peak frequency,
power, spectral edge frequency, spectral
entropy, total spectral power

Discrete wavelet
transform (DWT)

Bounded variation, coefficients, energy,
entropy, relative bounded variation, rel-
ative scale energy, standard deviation

C. Classification

The most relevant features were used with an ensemble
classifier based on the gentle adaptive boosting algorithm
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(Gentle AdaBoost) [16] to determine if the 2s EEG signal
epochs belonged to epilepsy patients or healthy subjects. The
models were trained in MATLAB, using a base classifier of
a classification and regression tree (CART), and 30 learners
trained in each model. Samples from epilepsy patients and
healthy subjects were labelled ‘1’ and ‘0’ respectively. The
data were partitioned at random into training (70%) and test
(30%) sets. As the equipment used in data acquisition were
different, the features used were normalized to values in the
range of 0 to 1 prior to model training.

The output of the classifier indicated if the epochs were
from epilepsy patients or healthy subjects. These were then
postprocessed to determine the overall label for the recording
(epilepsy or healthy). This was done by first calculating the
percentage of epochs for each patient that were classified
as positive. If this percentage was greater than a certain
threshold, the algorithm considered it to be from the long-
term recording of an epilepsy patient.

D. Performance evaluation

The performance of the algorithm was evaluated using
the sensitivity (SENS) and specificity (SPEC) metrics
that measure the fraction of correctly identified epilepsy and
healthy subjects’ recordings respectively, and are defined as
follows:

SENS =
TP

TP + FN
(1)

SPEC =
TN

TN + FP
(2)

where,
• TP is the number of recordings from epilepsy patients

correctly identified by the algorithm,
• FN is the number of recordings from epilepsy patients

incorrectly identified as healthy subjects,
• TN is the number of recordings from healthy subjects

correctly identified by the algorithm,
• FP is the number of recordings from healthy subjects

incorrectly identified as epilepsy patient.
Additionally, the performance of the epoch classification

models can be evaluated using the classification accuracy
(ACCclf ), classification sensitivity (SENSclf ) and classi-
fication specificity (SPECclf ). They are defined as follows:

ACCclf =
TPep + TNep

TPep + TNep + FPep + FNep
(3)

SENSclf =
TPep

TPep + FNep
(4)

SPECclf =
TNep

TNep + FPep
(5)

where,
• TPep is the number of epochs belonging to epilepsy

patients that were correctly classified,
• TNep is the number of epochs belonging to healthy

subjects that were correctly classified,

• FPep is the number of epochs belonging to healthy
subjects that were misclassified,

• FNep is the number of epochs belonging to epilepsy
patients that were misclassified.

IV. RESULTS

The features extracted in Table II, after being ranked is
shown in Table III. Four combinations of the first 5, 10,
15, and 20 features returned by the mRMR algorithm were
tested. The results of the epochs classification task on the
test sets using the respective number of features are shown in
Table IV. With the top 20 ranked mRMR features used in the
training of the model, 83.66% of all epochs were correctly
classified, and the classification sensitivity and specificity are
63.84% and 91.76% respectively.

TABLE III
FEATURES RANKED BY THE MRMR ALGORITHM

Features rank

TD First deriv. of zero crossing 1
TD Skewness 2
DWT cD2 Coefficient 3
DWT cD3 Coefficient 4
DWT cD4 Relative energy 5
TD Energy 6
TD Total local maxima minima 7
TD Kurtosis 8
DWT cA4 Entropy 9
FT Median frequency 10
TD Fractal dimension 11
FT Spectral entropy (12.5–2 5Hz) 12
TD Minimum 13
DWT cD4 Coefficient 14
FT Spectral entropy (0–3.125 Hz) 15
DWT cD3 Entropy 16
DWT cD2 Entropy 17
DWT cD4 Entropy 18
TD Variance 19
DWT cD4 Bounded variation 20

TABLE IV
EPOCH-BASED CLASSIFICATION RESULTS USING DIFFERENT

NUMBER OF MRMR FEATURES

Num. mRMR
5 10 15 20

Accuracy (%) 78.39 80.75 83.53 83.66
Sensitivity (%) 39.24 51.37 62.63 62.84
Specificity (%) 93.61 92.18 91.66 91.76

The postprocessing steps were applied on to the epoch
classification results of model that achieved the highest
performance (trained with 20 mRMR features). In epilepsy
patients’ recordings, the average percentage of positive-class
epochs was 59.33±13.3%, but in healthy subjects, this was
8.21±4.4%. A histogram showing the average number of
epochs predicted as ‘1’ in a recording sorted by the subject
groups are shown in Fig. 2. Applying threshold values from
0.05 to 0.45 (at 0.05 increments), the corresponding sensi-
tivity and specificity values were found, as shown in Table
V. At the threshold of 0.2, the sensitivity and specificity of
the algorithm are highest, at 100% and 98.7% respectively.
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Fig. 2. Histogram showing the ratio of epochs predicted as ’1’ for each
subject. An overlap in the ratios between epilepsy and healthy group at 0.2
and 0.3 can be seen.

TABLE V
ALGORITHM SENSITIVITY AND SPECIFICITY AT VARIOUS THRESHOLDS

Threshold Sensitivity (%) Specificity (%)

0.05 100.0 24.4
0.10 100.0 62.8
0.15 100.0 97.4
0.20 100.0 98.7
0.25 96.3 100.0
0.30 96.3 100.0
0.35 92.6 100.0
0.40 92.6 100.0
0.45 85.2 100.0

V. DISCUSSION

This paper presented a novel algorithm to differentiate
between long-term EEG recordings acquired from epilepsy
patients and healthy subjects. It used an ensemble machine
learning classifier to classify individual signals in 2s epochs,
which were then postprocessed to label the complete record-
ings as either epilepsy or healthy. It resulted in high accuracy,
with 100% sensitivity and 98.7% specificity when classifying
267 recordings from 27 epilepsy and 78 healthy subjects.

The algorithm presented in this paper can be highly
useful for clinicians to filter EEG recordings, focusing on
those potentially coming from patients with epilepsy and
thus reduce the time taken for diagnosis. It is, however,
not intended as a replacement to conventional diagnostic
methods, but when used alongside them, it aims to alleviate
some of the challenges present in manual analysis of EEG
and/or situations where there is incomplete history of the
disease or lack of seizures in EEG recordings. This can lead
to a reduction the uncertainties, and increase the confidence
and accuracy in the diagnosis and management of epilepsy.

The specificity performance of the algorithm can be fur-
ther improved by identifying and removing artefacts at the
preprocessing stage. In the algorithm presented, there were
no attempts to remove signal epochs corrupted by artefacts.
However, as EEG signals are prone to artefacts and may take
on characteristics similar to epileptic activity, the presence
of artefacts can compromise the classification performance.

Therefore, an artefact rejection stage that automatically
cleans the signal or removes corrupted signal epochs, can be
added to improve its performance. Additionally, the threshold
value can be changed to improve specificity at the expense
of detection sensitivity to meet specific clinical requirements.
Despite the potential for improvements, the results in this
work already demonstrate that characteristic features exist in
long-term EEG recordings of epilepsy patients that can be
used to reliably discriminate them from the recordings of
healthy subjects.
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