
 

 

 

  

Abstract— This study explores the feasibility of 

implementation of an analysis framework of neonatal EEG, 

including ML, sonification and intuitive visualization, on a low 

power IoT edge device. Electroencephalography (EEG) analysis 

is a very important tool to detect brain disorders. Neonatal 

seizure detection is a known, challenging problem. Under-

resourced communities across the globe are particularly affected 

by the cost associated with EEG analysis and interpretation. 

Machine learning (ML) techniques have been successfully 

utilized to automate seizure detection in neonatal EEG, in order 

to assist a healthcare professional in visual analysis. Several 

usage scenarios are reviewed in this study. It is shown that both 

sonification and ML can be efficiently implemented on low-

power edge platforms without any loss of accuracy. The 

developed platform can be easily expanded to address EEG 

analysis applications in neonatal and adult population.  

Keywords—EEG, AI, CNN, FM/AM sonification, low power, 
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I. INTRODUCTION  

Internet of Things (IoT) technology has a variety of 
applications in the medical domain, including 
electroencephalogram (EEG) acquisition and interpretation. A 
number of EEG acquisition IoT platforms have been reported 
[1–3]. The acquired data can be sent to the cloud for processing 
(Figure 1). The development in low power processing 
capabilities close to the internet edge has led to increasingly 
complex algorithms to be implemented close to the data 
source, improving reliability, security, and battery life. 
Moreover, IoT technology allows older generation EEG 
acquisition equipment to be connected to the cloud or to other 
mobile technologies such as tablet PCs. All these features 
make these devices ideal candidates for improving the quality 
of care, particularly in under-resourced communities.  

Neonatal seizures are common emergencies, and early 
detection of neonatal seizures is an essential clinical task. 
Failure to detect such events can lead to lifelong negative 
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outcomes or even death. The main issue is that most neonatal 
seizures do not present any clinical signs, and those can be 
diagnosed only by electroencephalography (EEG) monitoring 
[4]. Video-EEG monitoring and visual interpretation is the 
gold standard for diagnosis, but it requires years of specialized 
training, and such expertise is not available 24/7. Many 
neonatal units in under-resourced communities have only 
limited or no access to round the clock EEG analysis expertise 
and equipment. These conditions motivate the efforts directed 
towards an approach that facilitates the interpretation of 
brainwaves, increase access to EEG monitoring, lower the 
cost, and improve the outcome with early detection. The 
modalities of interpretation aim to assist a healthcare 
professional in the decision-making process. 

Significant research on objective methodologies for 
detecting seizure events using artificial intelligence (AI) has 
been performed in [5–9]. Most of these techniques are based 
on explicit feature engineering to capture the frequency, 
amplitude, energy, temporal structure of EEG [7–8]. While 
this requires a good knowledge of EEG, the recent advances 
of deep learning allow this stage to be omitted and still 
maintain a high degree of accuracy. Recent works have shown 
that fully convolutional neural networks (CNN) algorithms 
can be trained to detect neonatal EEG seizures, which match 
or outperform comparable feature-based machine learning 
algorithms [10].  

Along with AI, which provides an objective assessment of 
EEG, new methods of subjective EEG analysis have recently 
emerged in sonification [11–13] to support and complement 
visual EEG assessment. Employing signal transformation 
techniques like phase vocoder [14] or frequency/amplitude 
modulation [15] has demonstrated that sonification in the 
space of neonatal EEG analysis can lead to improved detection 
of seizures. These signal processing algorithms are fine-tuned 
to increase the human ear sensitivity to the presence of seizure-
specific pitch and rhythm evolution.  

This work implements an EEG analysis framework 
through AI and sonification on low power IoT edge devices. 
The analysis includes always-on AI predictions, EEG review 
mode through sonification with different playback speeds, and 
intuitive analytics visualization through an LED array. The 
resulting platform is a versatile, low cost and high accuracy 
mechanism to support a healthcare professional in the 
decision-making process.  
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Figure 1. EEG analysis framework. 
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II. THE ALGORITHMS 

This study implements two algorithms previously 
developed in the team on a resource-constrained edge device 
– the neonatal EEG sonification algorithm [15] and the CNN-
based seizure detection algorithm [10]. Figure 1 presents a 
general description of the proposed framework. The 
implemented algorithms are briefly reviewed next to indicate 
their suitability for EEG analysis in the resource-constrained 
device context. 

A. Sonification algorithm 

The FM/AM sonification achieves a waveform-to-spectra 
mapping as shown in Figure 2: 

• Filtering: The EEG signal is filtered between the range of 
0.5 to 7.5Hz, with previous subtraction of the DC component. 

• Downsampling: The signal is downsampled from 256Hz 
to 16Hz. 

• Compression and limiting: The dynamic range of the 
signal is reduced using a dynamic-range compressor which 
utilizes the envelope of the signal in conjunction with two 
hyperparameters: the threshold (T), which defines a minimum 
level of the envelope for the compressor to act and the 
compression ratio (R) which establishes the amount of 
compression to be applied. The envelope is further utilized in 
the AM stage. 

• Upsampling: The signal is upsampled from 16Hz to 
16kHz. 

• Modulation: the frequency and amplitude modulations 
(FM&AM) are performed. The FM utilizes a sinusoidal tone 
of 500Hz as a carrier signal, which is modulated by the 
compressed EEG signal using an exponential transformation. 
The AM utilizes the same envelope used for the dynamic-
range compression. 

B. CNN models for automated seizure detection 

A montage with eight channels of EEG is considered for 
this implementation. For each channel, the EEG signal is pre-
processed by filtering with a bandpass filter with a cut-off 
frequency of 0.5 and 12.8 Hz, and subsequently downsampled 
to 32Hz. Eight-second windows of EEG (with a stride of 1-
second) are fed into the CNN, constructed as a fully connected 
neural network (FCNN). The usage of convolutions performs 
feature extraction in a data-driven manner. FCNNs are 

composed of only convolutional, pooling and activation 
function layers in order to compute a deep nonlinear filter 
without the use of resource-heavy densely connected layers. 
This architecture maintains the translational invariance and 
hierarchical learning capabilities of a traditional CNN, with a 
reduced number of learned parameters resulting in a more 
lightweight model which requires less computational 
resources at inference time. With no need to implement 
complex feature extraction routines, this makes the FCNN 
architecture suitable for edge settings.  

The network is applied to pre-processed multi-channel 
continuous EEG. All filters and pooling operations are only 
applied across the temporal dimension; temporal ordering is 
maintained until the final layer when the average across all 
samples is calculated. All convolutional filters are 3 samples 
wide with a stride of one sample between successive filtering 
operations. Every three convolutional layers, there is an 
average pooling layer that downsamples the data by averaging 
across four samples with a stride of 3. Each layer has 32 feature 
maps except the penultimate layer and the final layer which 
have just two feature maps, one for seizure probabilities and 
the other for non-seizure probabilities. The architecture is 
summarized in Figure 3. The resultant model consists of 25k 
parameters and achieves an AUC performance of 98.5% as 
reported in [10]. 

C. Visualization 

Visual representation of EEG together with CNN inference 
probabilities for one EEG channel was implemented 
previously on a tablet PC according to IFCN guidelines [2]. 
An Android app was also developed in [16] for both 
visualization and sonification. Visualization through high 
definition resolution display takes a significant power 
consumption. For the edge/IoT implementation, power 
consumption and size of the device are of prime concern. In 
our scenarios where the CNN is always on, it is important to 
display key indicators in an intuitive way, including the 
presence or absence of seizures during a certain period, the 
number of seizures, the duration of the longest seizure, etc. 
These indicators can give an early indication for the necessity 
of further examination of EEG on the tablet. As a result, an 
8x8 color LED array was used. The edge device visualization 
can communicate with the tablet (Bluetooth/WiFi) where the 
EEG can be further analyzed and evaluated. 

Figure 2. A block diagram for the FM/AM sonification algorithm [15]. 

Figure 3. Block diagram of the CNN architecture developed in [10]. 
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III. SYSTEM IMPLEMENTATION RESULTS 

The presented algorithms are tested using the publicly 
available EEG data set presented in [17]. The on-board CNN 
algorithm has previously been tested on this open-access 
dataset resulting in state-of-the-art performance [10]. The 
multi-channel dataset contains annotated neonatal EEG 
waveforms collected at Helsinki University Hospital. This 
dataset contains EEG segments from 79 full-term babies; 
signals are sampled at 256 Hz with a 24-bit resolution. The 
dataset is not composed of long continuous unedited 
recordings but instead contains 1–2 h excerpts per baby. This 
overall dataset duration of the recordings is 112h, and the 
number of seizure events is 342. For this study, all the data are 
stored on the SD memory card.  

A Raspberry Pi 3B+ with a clock frequency of 800MHz 
was used for the evaluation of the system (Figure 4). The 
reasons for choosing the platform are connectivity (Ethernet, 
Wi-Fi, Bluetooth, SPI, USB), processing power, and audio 
peripherals. The connectivity allows the device to perform as 
a back-end device to the existing EEG acquisition system 
(using the USB) as well as connectivity to the cloud (using the 
Wi-Fi) or to an Android Tablet, as depicted in Figure 1. An 
8x8 LED array is also used to reflect the analysis for each of 
the 8 channels montage. Bluetooth protocol is used for 
connecting the system to wireless headphones.  

The framework presented in Figure 1 allows the coverage 
of multiple clinical scenarios of operation. Computations in 
the cloud have the advantage of data aggregation and the 
potential for more accurate algorithm development for both 
sonification and machine learning algorithms. On the other 
hand, cost, accessibility, security and reliability might be of 
concern, particularly for under-resourced communities, and 
additional resources or infrastructure have to be allocated to 
address those. By having the processing close to the source of 
EEG data, those shortcomings can be overcome.  

The envisaged scenario of operation is that the CNN is 
always on, processing simultaneously 8 channels of EEG. 
Sonification requires a medical professional, and while the 
sonification is implemented at the edge, it can be used on-

demand, in review mode for various analysis speeds of 
operation (real-time or fast review with a speed-up factor of 5, 
10 or 20). The LED display (Figure 4) can give real-time 
information through an intuitive color and amplitude mapping 
per channel. The display can be on-demand with only 2 LEDs 
continuously active to save power, one indicating if seizures 
have occurred since the last check and a second LED 
displaying the instantaneous probability using a color map. 

 If a seizure has occurred, then the medical professional has 
an option of review through sonification by listening to the 
buffered EEG from the SD card or visualizing the EEG 
together with the CNN inference on a tablet. Although 8 
channels are analyzed simultaneously by the CNN inference 
engine, only one channel is sonified through the review. The 
selection of the channel for review for sonification is made 
automatically based on the highest probabilities and duration. 
The channel selected for sonification is reflected through an 
LED's lighting on the associated LED array column.  

The power performance results of the implementation of 
the main blocks of the sonification for different review speeds 
are presented in Table 1. The largest computation time for 
sonification is for the real-time review for sonification 
(191ms), while the lowest computation time is for sonification 
with a review speed of 20 (92ms). The results of the execution 
time for inference on an 8s EEG window is presented in Table 
2. Each inference is preceded by a pre-processing stage, and 
the total inference time, including the pre-processing, is 50.3 
ms for one channel and 402ms for 8 channels. 

 
Figure 4. System Realization using Raspberry Pi 3 and LED Array. 

TABLE 1: EXECUTION TIMES FOR FM/AM SONIFICATION FOR A SINGLE-
CHANNEL EEG BLOCK OF 60 SECONDS 

Review 
speed 

Filterin
g (ms) 

Downsamp. 
(ms) 

Compr.  
(ms) 

Upsamp. 
(ms) 

Modulation 
(ms) 

(x1) 60.3 11.8 4.47 98.8 396 

(x5) 60.1 11.4 4.40 19.7 79.3 

(x10) 59.8 11.4 4.45 10.3 40.0 

(x20) 58.8 11.1 4.31 5.41 20.0 

 

 TABLE 2: EXECUTION TIMES FOR CNN INFERENCE ON A SINGLE-CHANNEL 

EEG BLOCK OF 8 SECONDS 

Convolution 
(ms) 

Batch Norm. 
(ms) 

Averaging 
(ms) 

Soft Max 
(ms) 

Total 
(ms) 

2.23 3.82 1.70 0.07 50.3 

 

 TABLE 3: ENERGY AND EXECUTION TIME MEASUREMENTS OVER LARGE 

EEG RECORDINGS 

 Energy (J) Exec. time (s) EEG length (s) 

CNN inference 

3.82OCSAijascvojanvcoasjncvasojp 

1.7 

0.07 

 Performance efficient 5.43 504 6993 

 Memory efficient 32.5 2806 6976 

Sonification (Review speed) 

 (x1) 1.36 119 6993 

 (x5) 

 

0.67 55.1 6993 

 (x10) 0.36 28.0 6993 

 (x20) 0.20 14.9 6993 
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The energy consumption and the execution times for the 
CNN inference and the sonification of a large EEG block of 
nearly 2 hours are presented in Table 3. 

Two CNN inference implementations are evaluated. One 
is implemented for performance, with smaller energy 
consumption and execution times but using high-level python 
libraries for AI like Keras and TensorFlow. The 
implementation for lower memory avoids the usage of such 
high-level libraries at the cost of larger execution times. 

Using the sonification with a speed of 20 results in a 
significant compression ratio of 468 times. This leads to 24h 
of EEG recording to be reviewed in only 3 minutes. The results 
of implementation suggest that there is scope to further 
optimize the always-on CNN inference for both execution 
time and power consumption. As the inference for 8 channels 
is taking 402ms (significantly lower than the 1s bound 
required by the algorithm), this suggests that the core clock 
frequency can be further reduced by half to 400MHz without 
a loss in accuracy, also resulting in significant power reduction 
(50%).  

The LED array consumes 630mA when all 64 LEDs are 
lit. However, the most important information can be 
represented by only 2 LEDs, with the remaining LEDs being 
lit only on demand. The two LED show a real-time largest 
inference probability to color map as well as a history of 
seizure across any of the 8 channels, respectively. When all 
array is lit, it gives per channel information (both in terms of 
the history of seizures as well as real-time probability to color 
mapping). Further visualization of the 8 channels of EEG can 
be performed by connecting the proposed system to a tablet or 
mobile phone on which an app was also developed for further 
analysis and evaluation. A video demonstration of the 
inference, sonification and visualization on the proposed 
system is accessible via https://youtu.be/rco5lqqucJw.  

IV. CONCLUSIONS 

A versatile, energy-efficient system for EEG interpretation 
was presented. Always-on machine learning inference, EEG 
review through sonification and intuitive visualization/alert 
system were implemented on a resource-constrained, low-cost 
edge device. The system operates as a back-end device to EEG 
monitoring equipment already available in the hospital setting, 
accepting EEG data in several formats, including EDF, CSV, 
etc.  The highly versatile system can be connected to the 
internet (Wi-Fi or Ethernet), or to a tablet for more detailed 
analysis. Further work will concentrate on further power 
optimization for both the CNN inference as well as 
sonification by building customized libraries for the main 
operations. The implementations will also be expanded to the 
analysis of EEG across a wider age-group as well as other 
medical conditions in which EEG analysis can play an 
important role. 
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