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Abstract— Computer-vision techniques provide a way to
conduct low-cost, portable, and real-time evaluations of
exercises performed as a part of physical rehabilitation. Recent
data-driven methods have explored using deep learning on 3D
body-landmark sequences for automatic assessment of physical
rehabilitation exercises. However, existing deep learning
methods using convolutional neural networks (CNN) fail to
utilize the spatial connection information of the human body,
which limits the accuracy of these assessments. To overcome
these limitations and provide a more accurate method to assess
physical rehabilitation exercises, we propose a deep learning
framework using a graph convolutional network (GCN) with
self-supervised regularization. The experimental results on an
existing benchmark dataset validate that the proposed method
achieves state-of-the-art performance with lower error than
other CNN methods, and the self-supervised learning improves
the prediction accuracy.

Clinical relevance—This work established a supervised learn-
ing method to automatically assess physical rehabilitation exer-
cises in the home environment using computer vision. This low-
cost, portable, and real-time evaluation may provide clinicians
with a way to provide feedback to patients about their exercise
performance without having to provide in-person supervision.

I. INTRODUCTION

Physical rehabilitation exercises are important in postop-
erative recovery and treatment of various musculoskeletal
conditions [1]–[4]. It is critical for patients to correctly
perform prescribed exercises to gain the expected outcome
for recovery [5]–[7]. The execution of rehabilitation exercises
is typically monitored in a hospital or clinic environment
by a clinician; however, patients are only offered a limited
number of supervised sessions due to high cost [8]. Contin-
ued correct performance of rehabilitation exercises in the
home environment is necessary to promote full recovery.
Therefore, an automated computer-vision solution provides
a low-cost, portable, and real-time approach to evaluate the
performance of physical rehabilitation exercises performed in
a home environment. The benefits of a home-based solution
are further increased during the COVID-19 pandemic.

In recent years, with the fast development of affordable
and portable 3D motion sensors, several methods have been
proposed for automatically assessing physical rehabilitation
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Fig. 1. Proposed framework for assessing physical rehabilitation exercises.
The input 3D body landmark sequences are captured by motion sensors
during the rehabilitation exercises. The proposed network model extracts
graph features from the input sequences and then performs regression of
the performance score based on learned features. During the training phase,
we optimized a self-supervised regularization branch to predict the future
action frames from the extracted features.

exercises from 3D body landmark sequences. [9]–[11] pro-
posed to use an interactive video game with a video sensor
Kinect to capture body motion during exercise and used it to
provide supportive feedback to players. [12]–[15] applied a
dynamic time-warping algorithm [16] to calculate the degree
of matching distance between the motion of trainers and
trainees and provide quantitative feedback on the quality of
the movement performance. [17], [18] applied probabilistic
approaches, such as Markov models and mixtures of Gaus-
sian distributions, to estimate a performance score based
on the likelihood of individual observed sequences with a
reference model trained on trainers’ movements. The latest
deep learning approach [19] proposed to use a combination
of convolutional neural networks (CNN) and recurrent neural
network (RNN) to model exercises and evaluate perfor-
mance, which achieved state-of-the-art performance on an
existing 3D physical rehabilitation dataset [20]. However,
there is limited exploration into utilizing the natural spatial
information of the human body for these purposes. Although
[19] proposed a multi-stream neural network model for
different body part inputs to exploit the spatial information
of rehabilitation movements, the spatial relationship among
different body parts, and joint connections within each part,
is not efficiently represented in CNN, thus limiting the
accuracy of a performance score prediction.

To overcome the limitations of existing methods, we pro-
pose a deep learning framework using a graph convolutional
network (GCN) [21] to learn features for quantitative scoring
of physical rehabilitation exercises from graph-represented
3D body landmark sequences. Moreover, we propose a
self-supervised learning approach to regularize the training
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process and force the network to learn the representations
of action patterns, increasing the robustness of the proposed
model. The proposed framework is shown in Fig. 1.

We evaluate the proposed method on the UI-PRMD [20]
benchmark dataset and compare the performance with other
state-of-the-art methods. The evaluation result validates that
the proposed GCN-based method outperforms other CNN
methods by achieving the lowest average prediction error,
and that the self-supervised regularization could improve the
performance of the regression model.

II. RELATED WORK

A. Physical Rehabilitation Exercise Assessment

Recent studies have proposed several methods for auto-
matic assessment of rehabilitation exercises using body land-
mark inputs, including game-based guiding systems [9]–[11],
quantitative modeling using distance functions [12]–[15] and
probabilistic approaches [17], [18]. In this paper, we focus
on deep learning methods for assessing exercise performance
using 3D body landmark sequences. The most relevant work
to our paper is [19], which proposed a temporal-pyramid
deep neural network, combining CNN and RNN, to predict
performance scores for a variety of different exercises using
multi-stream inputs of different body parts. The network
model in [19] exploited the spatial information of the human
body by using five sub-networks to take five streams of
body landmark sequences from two arms, two legs, and
the trunk. However, the spatial connections among the five
body parts, and joint connections within each part, were not
efficiently represented with this method. Since GCN [21]
has been validated to learn features from body landmarks for
various applications, such as action recognition [21]–[24], we
propose to use a GCN [21] as a feature extractor to efficiently
exploit the spatial information of body movements.

B. Action Quality Assessment

Action quality assessment (AQA), which quantifies ac-
tion patterns into scores based on RGB video or body
landmarks, has various applications including scoring sport
activities, such as diving, skating, and vault [25]–[28]; skill
assessment, such as piano playing [29]; and biomechanical
metrics estimation [30]. Recent studies have adapted GCNs
to learn features for AQA tasks: [31] proposed a diving score
estimation method on RGB videos using 3D convolutional
network and GCN, and [30] proposed a center of pressure
metrics estimation method on 3D body landmarks using
a multi-task model combining GCN and long short-term
memory (LSTM). In this paper, we adapt GCN for the
assessment of a variety of physical rehabilitation exercises,
and propose a framework using a GCN as a feature extractor
with self-supervised regularization to improve robustness of
the quantitative exercise score regression.

III. PROPOSED METHOD

The quantitative physical rehabilitation exercise assess-
ment is a regression task that predicts a performance score
from an input body landmark sequence. First, we formulate

the proposed assessment framework by defining the data
representation of the input body landmark sequences and
an objective function for optimization. Next, we propose a
regression model using a GCN to extract the graph-structured
features from the input data with a self-supervision branch
that predicts future body landmarks for regularization.

A. Data representation and objective function

To exploit the spatial information of body joints, we
define the graph of body landmark sequences following
the spatial-temporal graph representation proposed in [21].
The spatial connections of joints follow the structure of
the human skeleton, and each joint is connected with itself
among neighbored frames in the temporal dimension, thus
forming a spatial-temporal graph. To provide a spatial order
of the neighbored joints for graph convolution operation, we
apply a partitioning strategy following [21] by selecting the
sternum as the center, in which the connections towards the
center are labeled as inward and the others labeled outward.
Each joint then has three sub-neighbor sets including itself,
inward neighbors, and outward neighbors.

To compare different exercises in the same coordinate
system, we normalize the score values into a range of 0-1
following [19]. Then we use the mean binary cross-entropy
as the objective function for a total of N input sequences

lscore = − 1

N

N∑
i=1

(ŷi log yi + (1− ŷi) log(1− yi)) (1)

where ŷi is the predicted performance score, and yi is
the corresponding ground truth. We minimize the objective
function during the network training process.

B. Score regression model

Based on the graph representation and objective function,
we propose a regression model using the spatial-temporal
graph convolution (st-gcn) network proposed in [21]. For
input body landmark sequences with J joints, the spatial
graph convolution is implemented by

fout =
3∑

p=1

Wp(finΛ�0.5
p ApΛ�0.5

p )�Mp (2)

where p is the spatial index according to the spatial parti-
tioning. Ap represents a J × J adjacency matrix of which
the element Aij

p indicates if vertex vj belongs to the p
sub neighbor set vj . Λp is a diagonal normalization matrix
whose elements Λii

p are the column-sum of Aij
p . Mp is a

learnable J ×J attention map [21]. A 2D convolution along
the temporal dimension is implemented afterwards.

We sequentially apply four st-gcn blocks with 64 output
channels to learn features from the input body landmark
sequences. We set the temporal kernel size to 9 and the
temporal stride to 1 for a consistent temporal dimension of
the output features. For an input body landmark sequence
of size T ∗ D ∗ J where T , D, J represents the temporal
frame number, the dimension of each joint, and the number
of joints respectively, we apply a global average pooling layer
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Fig. 2. Proposed regression model with self-supervised regularization. The learned features from the GCN feature extractor are fed into a linear layer to
predict the estimated performance scores. During the training phase, we trained a self-supervision branch in parallel to predict the future body landmarks
from the learned graph features.

to aggregate the learned features of size T ∗ 64 ∗ J into a
(64J) ∗ 1 vector, followed by a linear layer with a softmax
activation to output the performance score. The architecture
of the proposed model is shown in Fig. 2.

C. Self-supervised regularization

We propose a self-supervision branch predicting future
body landmarks, as regularization during the training phase,
to increase the robustness of the performance score regres-
sion, which is shown in Fig. 2. Since the prediction of future
body landmarks is a sequence-to-sequence regression, we
apply a two-layer LSTM with a hidden state size of 512
following the GCN feature extractor as the self-supervision
branch. For an input sequence of T frames, the input of
each LSTM unit is the learned features at temporal position
of frame t, ranging from 1 to T , and the output is the body
landmarks at a future temporal position with a shift s at
frame t + s. We set s to 1 for UI-PRMD dataset [20].

For optimization of the future body landmark prediction,
we use a mean square error (MSE) function between the
predicted value and ground truth as the objective function

lself =
1

T ∗ J ∗D

T+1∑
t=2

J∑
j=1

D∑
d=1

(ŝtjd − stjd)2 (3)

where the ŝtjd is the predicted body landmark value of
joint j at frame t along the d-th dimension, and stjd is the
corresponding ground truth. During the training phase, we
optimize the objective function of self-supervision branch
in parallel with the score regression model via back prop-
agation. During the testing phase, we use the score regres-
sion model without the self-supervision branch to predict
the performance score; therefore, we avoid extra computa-
tional cost during the application of a trained model. Since
the performance score is highly correlated with the action
patterns, the self-supervision branch, by predicting future

body landmarks, forces the GCN feature extractor to learn
features that represent rehabilitation action patterns. This step
increases the robustness of the score predictions, especially
for the existence of some outlier label values.

IV. EXPERIMENTS

A. Implementation Details

We evaluated the proposed method on the UI-PRMD
dataset [20], which is a 3D movement benchmark dataset
for physical rehabilitation exercises. The dataset consists of
10 different exercises targeting different regions of the body
performed by 10 healthy individuals, with each exercise
repeated 10 times in both a correct manner and incorrect
manner, respectively. The movements were recorded by a
Vicon optical tracker and a Kinect camera. The performance
scores were proposed in [19], based on the log-likelihood of
a Gaussian mixture model, which encoded a low-dimensional
data representation obtained by a deep auto-encoder network.
To focus on the comparison of different network models, we
followed [19] to use the same inputs of 117-dimensional
(39 joints ∗ 3 dimensions) sequences of angular joint dis-
placements recorded by the Vicon tracker, with the same
pre-processing including normalization and interpolation.

For each exercise, we trained the proposed regression
model on the training set using the Adam optimizer with
an initial learning rate of 0.0001 and a batch size of 16. We
set the maximum epoch number to 300 and stopped training
after observing no improvement for 100 epochs. For the self-
supervision branch, we applied a dropout for LSTM with a
dropout rate of 0.5. As an ablation study, we also report the
results using the same parameters without the self-supervised
regularization during the training phase. We performed all
experiments using the PyTorch platform on a machine with
an Intel i7 4.20 GHz processor and Nvidia RTX 2080-Ti
graphic card.

283



TABLE I
QUANTITATIVE RESULTS (MAE) OF REHABILITATION EXERCISE ASSESSMENT ON UI-PRMD DATASET

Exercise
Proposed

GCN + self
supervision

Proposed
GCN

Liao et al.
[19]

Deep CNN
[19]

Co-
occurrence

[32]

Deep
LSTM [19]

PA-LSTM
[33]

Hierarchical
LSTM [20]

Two-stream
CNN [34]

E1 0.00895 0.01005 0.01077 0.01357 0.01052 0.01670 0.01839 0.03010 0.28798
E2 0.02039 0.01932 0.02824 0.02953 0.02905 0.04934 0.04413 0.07742 0.22349
E3 0.03643 0.03877 0.03980 0.04141 0.05577 0.09382 0.08094 0.13766 0.20493
E4 0.01448 0.01594 0.01185 0.01640 0.01347 0.01609 0.02347 0.03580 0.36033
E5 0.01478 0.01425 0.01870 0.01300 0.01687 0.02536 0.03156 0.06367 0.12332
E6 0.02031 0.02012 0.01779 0.02349 0.01886 0.02166 0.03426 0.04676 0.21119
E7 0.02175 0.02204 0.03819 0.03346 0.02733 0.04090 0.04954 0.19280 0.05016
E8 0.02255 0.02585 0.02305 0.02905 0.02464 0.04590 0.05070 0.07260 0.04337
E9 0.02568 0.02694 0.02271 0.02495 0.02720 0.04419 0.04313 0.06508 0.14411

E10 0.02615 0.02857 0.04162 0.03667 0.04657 0.05198 0.07727 0.16009 0.11044

Average 0.02115 0.02219 0.02527 0.02615 0.02703 0.04059 0.04534 0.08819 0.17593

(a) Deep CNN [19] (b) Liao et al. [19] (c) Proposed GCN (d) Proposed GCN + self supervision

Fig. 3. Aggregated regression results of the physical rehabilitation exercise performance score on UI-PRMD dataset [20], sorted by ground truth values.
The horizontal axis indicates the indices of sorted data points (exercise movement sequences), while the vertical axis indicates the performance score. The
blue lines represent the ground truth values that are sorted in ascending order. The dots in four subplots represent the corresponding predicted values of
(a) Deep CNN [19], (b) Liao et al. [19], (c) Proposed GCN, (d) Proposed GCN with self-supervised regularization.

For quantitative evaluation, we report the mean absolute
error (MAE) between the prediction values and ground truth
performance scores on the validation set for the 10 exercises.
For each exercise consisting of N sequences, the MAE was
computed as

MAE =
1

N

N∑
i=1

|ŷi − yi| (4)

where ŷi was the prediction value, and yi was the corre-
sponding ground truth score.

For comparison, we report the performance using other
state-of-the-art methods including the spatio-temporal neural
network model, deep CNN model, and deep LSTM model
proposed in [19], as well as the co-occurrence model [32],
PA-LSTM [33], two-stream CNN [34], and hierarchical
LSTM [20] with the results provided in [19].

B. Evaluation Results

The quantitative evaluation results on the UI-PRMD
dataset [20] are reported in Table I. For better visualization,
we highlighted the top two methods with the lowest MAE for
each exercise and underlined the top method. Comparing the
proposed framework with the other methods shows that the
proposed GCN methods achieved better performance with
lower MAE for most exercises, with a significant improve-
ment for the average MAE of all exercises. Considering
the largest MAE among all exercises, we observe that the
proposed GCN method is more robust, in that it achieves the
lowest MAE for those exercises that are relatively challeng-
ing for other methods to assess, such as E2, E3, E7, and E10,
by efficiently utilizing the spatial information. Comparing

the results of the proposed GCN model with and without
the self-supervised regularization, we observe that the self-
supervised regularization achieved better performance with
a lower average MAE value.

We also present the visualization of aggregated regression
results in Fig. 3 using Deep CNN [19], Liao et al. [19],
and the proposed model with and without the self-supervised
regularization. We aggregated the predicted results of all 10
exercises and sorted them in an ascending order of the corre-
sponding ground truth values. From the plots we observe that
the proposed framework is more robust especially for those
movements with lower scores under 0.9, while the prediction
of the other two CNN-based methods suffers relatively larger
error values. Comparing Fig. 3c and 3d, we observe that the
proposed model achieved fewer significant outlier points with
the self-supervised regularization.

The quantitative evaluation and visualization both validate
that the proposed method achieves state-of-the-art perfor-
mance on the UI-PRMD [20] benchmark dataset, and that the
self-supervised regularization could improve the proposed
model by increasing the robustness to outliers.

V. CONCLUSIONS
In this paper we present a deep learning framework using

GCN and self-supervised regularization to assess the perfor-
mance of physical rehabilitation exercises. The experiments
on an existing benchmark dataset validate that our proposed
method achieved state-of-the-art performance with lower
prediction MAE and improved robustness. This work will
promote a low-cost, portable, and real-time technique to
assess the performance of physical rehabilitation exercises.
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