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Abstract— During surgical training, it is important for the
surgeon develops good motor skills throughout his training.
For this reason, various surgical training systems have been
developed to enhance these skills. However, one of the great
challenges in these training systems is being able to objectively
measure the ability and performance of the main surgical tasks,
where currently only a global measurement is obtained once
the task is completed. In this work, a temporal evaluation
scheme is proposed, that is, an evaluation of local surgical
performance at different time intervals during the training
of typical tasks (knot-tying, needle-passing and suturing). The
goal is to automatically classify expert (experience >100 hrs)
and non-expert (experience <10 hrs) surgeons according to
their performance during training, based on three classifiers:
K-Nearest Neighborhood, Random Forest, and Support Vector
Machine Unlike other previously reported methods, this work
proposes a new evaluation scheme based on segments or time
intervals, which can be an indicator of the surgeon’s local
performance during a robotic surgical task, without the need for
direct labeling of the data at the segment level. The classification
performance from obtained results was in accuracy 83% to
100%, 88% to 100% of AUC-ROC, and 88% to 100% of F1-
Score in the final test between experts and non-experts surgeons,
where the Support Vector Machine classifier presented the best
performance. These results suggest that this proposed method
by time intervals could be used in various surgical trainers to
evaluate the local performance of a surgeon during trainingand
thus be able to provide a tool for the quantitative visualization
of opportunities to improve surgical skills.

Clinical relevance— We consider that the proposed method
to carry out a local performance evaluation during surgical
training can provide useful information in the learning and
improvement of surgical skills.

I. INTRODUCTION

The surgical training, whether apprentice or expert,
presents obstacles in its training process, for example, by
overcoming the start of learning, economic pressures, time,
pressure on the least amount of errors to avoid putting
patients at risk in actual surgery. Therefore, it is necessary
to develop training systems with artificial reproduction that
consider the visualization, manipulation of the instrument,
and spatial orientation. In some cases, simulation of complete
surgical procedures [1].
While the development of simulation and task planning
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systems is a work of great interest today, objective methods
for the measurement of surgery skills are still researched
[2]. That is why the main interest of the proposed work is
developing a system to measure performance in set of robotic
surgery tasks.
In the reported paper by Evans et al. [3], wireless inertia
sensors are used to evaluate surgical skills in a laparoscopic
surgery simulator. Their findings suggest that the proposed
metrics can be used to generate a score for a given la-
paroscopic simulated task. Pérez et al. [4], performed three
tasks in the EndoViS training system. Motion data from
the instruments were captured with a video tracking system
integrated into the EndoViS simulator, using 13 Motion
Analysis Parameters (MAP). Three classifiers were trained:
Radial-Based Function Networks (RBFNets), K-star (K*),
and Random Forest (RF) to classify participating surgeons.
They found that K* method showed the best performance in
the expert and non-expert surgeons’ classification.
In the work proposed by Siyar et al. [5], the K-Nearest
Neighbors (KNN) classifiers, Parzen window, Support Vec-
tor Machine (SVM), and Fuzzy K-NN were trained. The
obtained results show similar performances among the clas-
sifiers; however, the SVM method presented the best per-
formance. So, this proposed approach could be implemented
to improve the surgeons skills during a surgery simulator
training.

These three described studies showed a high automatic
classification performance according to the level of experi-
ence between expert and non-expert surgeons; however, all
these methods focus on the global surgical task performance.
In this context, a global performance is a binary classification
metric that indicates whether person is an expert or a non-
expert at the end of a surgery simulator training.

A gesture-based analysis was proposed by Vedula et al.
[6]. They fit logistic generalized estimation equations models
to classifier the skill level (expert vs. novice). For this
analyses, they studied the close incision task divided in the
following maneuvers: suture throw, 2-loop knot, 1-loop knot,
and several gestures required to complete the task. However,
they only classify between expert and novice surgeons at the
level of task, maneuvers and gestures.

Unlike these reported works, the main objective of this
research is to give a local performance metric during the
robotic surgery tasks. In this way, we would have a local
performance metric by time intervals (segments) as the task
is carried out, that is not only at the end of a training
task; allowing us to know about error behavior in each time
interval.
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Fig. 1. Proposed methodological diagram.

The proposed method is based on three supervised classi-
fiers that use a set of motion characteristics; these features
were previously selected through a statistical analysis. These
classification methods will assign a binary performance label
(expert or non-expert) both for the classifier training and dur-
ing the local segment analysis. The proposed methodology,
as well as the results and discussion are presented in the
following sections.

II. MATERIALS AND METHODS

The pipeline proposed for data processing, classification
and validation is presented in figure 1, which is consistent
with the following subsections.

A. Dataset

The dataset used in this work was JIWSAWS [7], which
consists of kinematic and video information from eight
surgeons of different skill levels. They performed five rep-
etitions of three elementary surgical tasks on a table model
using a da Vinci robotic surgical system.

The tasks included in the JIWSAWS database are: su-
turing, knot-tying, and needle-passing, which are standard
components of most surgical skills training curricula. In
addition, the dataset includes manual annotations of surgical
gestures for each task and surgical skills using global scores.

1) Suturing: The subject takes the needle, enters the
incision (designated as a vertical line in the desktop model),
passes the needle through the ”tissue”, enters the marked
point on one side of the incision, and exits the side of the
marked incision at the corresponding point on the other side.
After the first puncture, the subject removed the needle from
the tissue, passed it to his right hand, and then repeated it
three times.

2) Knot-tying: The subject tied one end of the suture to a
flexible tube, and one end of the flexible tube was connected
to the surface of the desktop plaster. Make a simple knot.

3) Needle-passing: The subject raised the needle (not
captured in the video in some cases) and passed four small
metal rings from right to left. These rings are connected to
a short height above the surface of the desktop model.

B. Segment extraction

The dataset, contains the recorded kinematic data of the
surgery instruments for each task. From the kinematic data,
the x, y and z axes displacements are acquired during
training. To obtain a local performance metric, it is proposed
to divide each performed surgery task (knot-tying, needle-
passing and suturing) into overlapping temporal segments,
using temporal shifts of samples between the current and
the next segment.

Figure 2 shows a representative example of segments
extraction of a kinematic variable.

C. Motion analysis parameters (MAP)

The kinematic data of each segments were analyzed us-
ing ten MAP described in table I. These parameters were
calculated from the displacements x[n], y[n] and z[n] of the
instruments. The parameters were calculated using software
developed in Python 3.7. In this work, only right-hand
MAP values were considered as input vectors of classifiers.
Mathematical explanation of motion analysis parameters are
presented in Perez et al. [4].

D. Feature selection

In order to determine which MAP (table I) can be used to
train and improve the performance of three classifiers, the
Mann-Whitney U test was performed to obtain MAP that
show statistically significant differences between surgeons
with more than 100 hours of experience (experts) and
surgeons with less than 10 hours of experience (non-expert).
A probability of (p <= 0.05) was considered statistically
significant.

E. Classification

The proposed algorithm is based on expert and non-
expert automatic classification during three training tasks

Fig. 2. A representative example of the segment division of a kinematic
variable (displacements in x[n], y[n] or z[n]), acquired during training. N
represents the total number of segments, n is each sample of the vector,
and i is an example of an intermediate segment.
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TABLE I
DESCRIPTION OF THE USED METRICS (MAP) IN THE CLASSIFICATION.

Metrics Definition
AX Average position on X-axis (mm)
AY Average position on Y-axis (mm)
AZ Average position on Z-axis (mm)
AVX Average velocity on X-axis (mm/s)
AVY Average velocity on Y-axis (mm/s)
AVZ Average velocity on Z-axis (mm/s)
AAX Average acceleration on X-axis (mm/s2)
AAY Average acceleration on Y-axis (mm/s2)
AAZ Average acceleration on Z-axis (mm/s2)
Path length Total route followed by the instrument (mm)
Depth perception Total distance traveled along the axis (mm)
Motion smothness Abrupt changes of the acceleration (mm/s3)
Average velocity Change rate of instrument position (mm/s)
Average acceleration Instrument velocity change rate (mm/s2)

using MAP variables. The database provides us with the
tasks labeled if performed by an expert surgeon or a non-
expert surgeon, which we use to infer performance over time
(for each segment analyzed). In this way, a binary label
was assigned to each extracted segment, according to the
experience level (label equal to -1 for the non-expert class
and +1 for the expert class). As classification methods, it
was proposed to use three classifiers described below:

1) KNN: Is a nonparametric and supervised regression
and classification method. KNN is used as a method to
classify items by training short-distance examples in element
space. KNN is a type of learning in which the function only
approaches locally, and all calculations are postponed for
classification [8].

2) RF: It is a combination of predictor trees. Each tree
depends on the values of a random vector tested indepen-
dently and with the same distribution for each of these. It
is a substantial modification of bagging that builds a long
collection of uncorrelated trees and then averages them [9].

3) SVM: It constructs a hyperplane or set of hyperplanes
in a space of very high (or even infinite) dimensionality that
can be used in classification or regression problems [10]. In
this work a linear kernel was used.

F. Validation

To evaluate the classifiers performance, the mode of all
the classified segments were calculated and then compared
versus the global labels (expert or non-expert), previously
assigned in the database. This was done for each robotic
surgical task.

The database was divided into 70% training data and 30%
data for the final test. With the training data, a 10-fold val-
idation process was performed for the three tasks analyzed.
Accuracy (ACC), F1-Score, and Area Under the Receiver
Operating Characteristics (AUC-ROC) metrics were used to
measure the classification performance between expert and
non-expert surgeons. The obtained results are presented in
the following section.

III. RESULTS AND DISCUSSION
The trajectory of an expert and a non-expert surgeon for

knot-tying task is shown in figure 3. A clear difference can

Fig. 3. Knot-tying task instrument trajectory of an expert and a non-expert
surgeons.

be observed between the trajectories of expert surgeons (red)
and non-Expert (blue) according to displacements on AX ,
AY and AZ axis. This agrees with the Mann-Whitney U
test, in which statistically significant differences were found
(p <= 0.05) between all MAP analyzed. For this reason, all
MAP were used for classifiers training.

The classification results are presented in table II. In
first column, three analyzed tasks are presented; the second
column shows each implemented classifier. The first section
corresponds to cross-validation and the last section of the
table is the final test. Regarding knot-tying task, it can be
noted that in the three classifiers (KNN, RF and SVM) 100%
were obtained in all metrics for cross validation and final
test. This agrees with the figure 3(A), where differences are
observed between the trajectory of an expert and a non-
expert surgeon. Regarding the needle-passing task, it can be
observed that all classifiers obtained a good performance.
The classifier that showed the best performance for this task
was SVM with 100% (for all metrics) for cross-validation
and final test, followed by RF with 95% for ACC, 93% for
AUC-ROC and 86% for F1-Score in training stage and 100%
in final test for all metrics. KNN classifier presented the
lowest performance in final test with 83% for ACC, 88%
for AUC-ROC and 88% for F1-Score metrics. Finally, for
suturing task, KNN and SVM classifiers obtained 100% in all
evaluations; RF showed a performance of 97% for ACC, 97%
for AUC-ROC and 96% for F1-Score in cross validation and
100% in final test for all metrics. In general, the classification
performances obtained show to be consistent with what is
shown in figure 3, where visual differences between expert
and non-expert surgeons are shown.

The obtained results are comparable with previously re-
ported by Pérez et al. [4], who automatically classified
between expert and non-expert surgeons during training
in a laparoscopic surgery simulator. They report ACCs of
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TABLE II
CLASSIFIERS PERFORMANCE RESULTS (MEAN AND STANDARD DEVIATION).

10-Fold cross-validation Final test

Task Classifier ACC AUC-ROC F1-Score ACC AUC-ROC F1-Score
Knot-tying KNN 1.0 +- 0.0 1.0 +- 0.0 1.0 +- 0.0 1 1 1

RF 1.0 +- 0.0 1.0 +- 0.0 1.0 +- 0.0 1 1 1
SVM 1.0 +- 0.0 1.0 +- 0.0 1.0 +- 0.0 1 1 1

Needle-passing KNN 1.0 +- 0.0 1.0 +- 0.0 1.0 +- 0.0 0.83 0.88 0.88
RF 0.95 +- 0.16 0.93+-0.19 0.86+-0.38 1 1 1
SVM 1.0 +- 0.0 1.0 +- 0.0 1.0 +- 0.0 1 1 1

Suturing KNN 1.0 +- 0.0 1.0 +- 0.0 1.0 +- 0.0 1 1 1
RF 0.97+- 0.11 0.97+- 0.09 0.96+- 0.12 1 1 1
SVM 1.0 +- 0.0 1.0 +- 0.0 1.0 +- 0.0 1 1 1

93.33% for K-star, 87.58% for RBFNet, and 84.85% for
RF classifiers for final test validation. These results are the
average performance of three tasks: peg transfer, pattern
cutting, and intracorporeal knot suture. As can be seen, our
results exceed those reported by Pérez et al. with ACCs
between 83% and 100% for final test validation (table II).
In contrast, to results reported by these authors, who used
MAP and global performance, we proposed local analysis
and performance metrics by segments.

As described, an analysis based on several subtasks has
been proposed by Vedula et al. [6]. They analyzed three
different models (task level), which had similar classification
accuracy, with an AUC-ROC of 0.79 for the task level model,
0.78 for the maneuver level model, and 0.7 for the gesture
level model. In contrast, we obtained AUC-ROCs from 0.86
to 1 for the three tasks proposed, which overcome that
reported by Vedula et al. In addition, the proposed analysis
is based on local segments, which can allow continuous
feedback throughout the task during robotic surgery training.

IV. CONCLUSIONS

In this work, a new performance evaluation scheme for
a surgeon during a given surgical task training was pre-
sented. The proposed algorithm is based on a set of motion
parameters that feed three classifiers: KNN, RF and SVM.
The aim is to automatically classify between expert and
non-expert surgeons according to their performance during
training. Additionally, in this work a segment-based evalua-
tion scheme is proposed which provides an indicator of the
surgeon’s local performance. As future work, it is expected
to be able to assign a performance rating instead of a
label (expert and non-expert surgeons), in addition a manual
segment level labeling will be include to evaluate global and
local performance. In addition, it is intended to evaluate
the classifiers with a laparoscopy training simulator. We
consider that this proposal can be used in medical simulators
to improve the user experience and strengthen continuous
improvement in surgical procedures learning.
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