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Abstract— Photoacoustic (PA) tomography is a relatively new 

medical imaging technique that combines traditional ultrasound 

imaging and optical imaging, which has great application 

prospects in recent years. To reveal the light absorption 

coefficient of biological tissues, the images are reconstructed 

from PA signals by reconstruction algorithms. However, 

traditional model-based reconstruction method requires a huge 

number of iterations to obtain relatively good experimental 

results, which is quite time-consuming. In this paper, we propose 

to use deep learning method to replace brute parameter 

adjustment in model-based reconstruction, and speed up the rate 

of convergence by building convolutional neural networks 

(CNN). The parameters we defined in our model can be learned 

automatically. Meanwhile, our method can optimize the 

increment of gradient in each step of iteration. The numerical 

experiment validates our method, showing that only three 

iterations are needed to obtain the satisfactory image quality, 

which normally requires 10 iterations for tradition method. It 

demonstrated that efficiency of photoacoustic reconstruction 

can be greatly improved by our proposed method, compared 

with traditional model-based methods. 

 Index Terms— Photoacoustic tomography, Deep learning, 

Convolutional neural networks, Reconstruction. 

I. INTRODUCTION 

Photoacoustic tomography (PAT) is an emerging 
biomedical imaging modality, which combines the advantages 
of optical and ultrasound imaging technologies. It can get 
biomedical images without ionizing radiation and damaging 
the tissue. PAT is based on photoacoustic effect, which refers 
to the generation of ultrasonic waves following light 
absorption by the sample [1-3]. When illuminating the sample 
tissue with pulsed laser, transient temperature rise will lead to 
thermoelastic expansion, which emits ultrasonic waves 
detected by the ultrasound transducer. Since PAT does not 
suffer the limitation of light diffusion, it can achieve high 
spatial resolution at deep penetration in tissues, and 
demonstrated wide applications these years. 

In a photoacoustic computed tomography (PACT) system, 
ultrasound data collected by sensors will serve as input into 
image reconstruction algorithm. It will produce maps of the 
absorbed optical energy density within the sample tissue. High 
temporal resolution allows PACT to have promising 
applications in brain imaging, breast cancer diagnosis and 
whole-body imaging in mice. However, there exists ill-posed 
PACT reconstruction that artifacts will be shown on the image 
due to sampling under Nyquist sampling requirement or 
limited-view conditions. The ill-posed problem cannot be 
solved traditionally by using the methods like time reversal 
(TR) and filtered back projection (FBP) [4], while model-
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based method shows superior performance in ill-posed 
condition [5-7].  Considering that traditional algorithms need 
to iterate a huge number of times and adjust the hyper-
parameters in order to get better results, the application of 
model-based method is limited, especially in real-time 
imaging scenarios.   

Recently, deep learning has received a lot of attention from 
both research institutes and industries. The core of deep 
learning is feature learning, in which hierarchical networks are 
used to obtain hierarchical feature information to overcome 
important challenges that previously required manually 
designed feature extraction operators to do so. Deep learning 
has shown advantageous features like time-saving, and it can 
get excellent image quality in the field of photoacoustic 
imaging reconstruction [8-11].  

In this paper, a simple convolutional neural networks 
(CNN) is used to avoid the tedious adjustment of the hyper-
parameters, and accelerate the rate of convergence in PA 
image reconstruction. We divide each step of iterative items 
and optimize the increment of gradient. The numerical 
experiment shows that our method has a superior performance 
in a fewer iterative step (3 times) compared with traditional 
method (10 times), which dramatically reduces the time to get 
the gradient descent (GD) result for limited-view PA data. 
Furthermore, the peak signal-to-noise ratio (PSNR) and 
structural similarity (SSIM) [12] of the image shows that our 
method has much better performance on PA image 
reconstruction compared with traditional method.  

II. METHODOLOGY 

A. Forward and inverse model 

In PAT system, we develop a model to describe the 
propagation of the acoustic wave. The photoacoustic pressure 
follows the equations below.  

(𝜕𝑢 − 𝑐2𝛥)𝑝(𝑥, 𝑡) = 0 (1) 

Besides, we have some initial conditions: 𝑝(𝑥, 𝑡 = 0) =
𝑓(𝑥), 𝜕𝑡𝑝(𝑥, 𝑡 = 0) = 0.  𝑐  represents the speed of sound 
propagation,  𝛥  stands for the spatial Laplacian and 𝑝(𝑥, 𝑡) 
shows the pressure at spatial location  𝑥 and moment 𝑡. 

Since the wave propagation equation is such complex, we 
simply define a linear mapping for the model-based PAT: 

𝐴𝑥 = 𝑦 (2) 

which is forward model of PAT. The corresponding inverse 
model is the problem we need to solve, so-called image 
reconstruction. 𝐴 is a forward operator, 𝑥 is the image we need 
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to reconstruct, and 𝑦  represents the measured pressure 
distribution on time series. Our reconstruction task is mapping 
the measured pressure data on time series 𝑦 , which were 
detected by the acoustic sensors, to a high spatial resolution 
medical image. 

Theoretically, we can simply get the image at the formula 
level by multiplying 𝑦 by 𝐴∗, where 𝐴∗ represents the inverse 
of the forward operator 𝐴 . Since there exists ill-posed 
condition, it is really difficult for us to get 𝐴∗  by direct 
measurement. In this situation, we try to minimize the least 
squares error: 

min
𝑥

‖𝐴𝑥 − 𝑦‖2
2 . (3) 

to get better reconstruction results. 

B. Learnable reconstruction 

A common approach to find a solution to Eq. (3) is given 
by a gradient descent (GD) scheme. It follows the equation 
shown below  

𝑥𝑘+1 = 𝑥𝑘 − 𝛶∇(𝐴𝑥𝑘 − 𝑦), 𝑘 ≥ 0. (4) 

In order to get the estimate value as close as possible to the 
ground truth, we can define a learnable coefficient 𝛶 ℝ 
which is small enough and can be optimized after each 
iteration. Besides, 𝐹(𝑥𝑘) ≥  𝐹(𝑥𝑘+1) and the sequence (𝑥𝑘) 
will converges to the minimum. To get a better performance in 
shorter time, we add a regularization item 𝑅(𝑥𝑘) to improve 
the method. Therefore, the penalty function Eq. (3) can be 
rewritten as: 

min
𝑥

‖𝐴𝑥 − 𝑦‖2
2 + 𝜆𝑅(𝑥). (5) 

We calculate regularization item 𝑅(𝑥𝑘)   using total 
variation (TV) method [13]. Similarly, we get best estimate 
value by gradient descent. 

  The TV regularization term can be designed differently 
according to the reconstruction goals. Since traditional TV 
algorithm sometimes fail to preserve the edges details of the 
image, the TV of parameters in our model was set as 

𝑇𝑉 =  ∑ √(𝐴𝑖,𝑗 − 𝐴𝑖−1,𝑗)
2

+ (𝐴𝑖,𝑗 − 𝐴𝑖,𝑗−1)
2

𝑖,𝑗

, (6) 

where i and j denotes the location indexes of TV. Then the 

iteration function of GD for the 𝑘𝑡ℎ step became 

𝑥𝑘+1 = 𝑥𝑘 − 𝛶∇(𝐴𝑥𝑘 − 𝑦) − 𝜆 ∇𝑇𝑉(𝑥𝑘), 𝑘 ≥ 0. (7) 

  Since it is difficult to adjust the values of two parameters 
at the same time, we introduce CNN to our work to make the 
parameter learnable and let our adjusting process more time-
saving. Data training is performed simultaneously using two 
structurally similar networks to obtain the parameters, 𝛶 and 𝜆 
separately. In the k-th step, the image is updated from xk to xk+1 
using: 

𝑥𝑘+1 = 𝑥𝑘 + 𝐶𝑁𝑁(∇(𝐴𝑥𝑘 − 𝑦), ∇𝑇𝑉(𝑥𝑘)), 𝑘 ≥ 0. (8) 

Our work is first implemented at the simulation level, 
using MATLAB toolbox k-Wave [14] to set the initial 
conditions for the model. We generate enough raw training 
data and train it with the CNN. We simulate in half-ring 
transducer condition, which contains 64 channels with 19 mm 
radius to receive the photoacoustic signals. We set the sound 
speed as 1500 m/s.  The whole region is 40 mm × 40 mm with 
380 × 380 grids, while our region of interest (ROI) is of 
26.95×26.95 mm size. Furthermore, the center frequency of 
the sensor is 2.5 MHz with 80% fractional bandwidth. 
Moreover, our reconstruction images have 256 × 256 pixels.  

Pytorch [15] is used to train our CNN that makes 
parameters 𝛶  and 𝜆 learnable. For each iteration, MATLAB 
calculates the gradient of estimate error 𝐴𝑥𝑘 − 𝑦 as well as 
regular term 𝑇𝑉(𝑥𝑘) , where 𝐴  is forward operator. Put 
∇(𝐴𝑥𝑘 − 𝑦) and ∇𝑇𝑉(𝑥𝑘) into our two CNN that enable to 
help us get two important learnable parameters 𝛶 and 𝜆, where 
∇ denotes gradient descent operator. To constrain iterations, 
we use MSE loss to train our model: 

Loss(𝑥𝑘) = ∑ 𝑀𝑆𝐸(𝑥 − 𝑥𝑘)                        (9) 

 

 
Figure 1. The concrete convolutional neural network structure of our model. The diagram shows one convolutional neural network which representing 

one iteration of the deep gradient descent and xk represents the current estimated image. R(xk) is the regularization item and we use total variation (TV) 

method to calculate it. ∇ is gradient operator. The blue arrows denote a convolutional layer with 3 × 3 kernels and the resulting channels in each layer are 

indicated in the squares. The yellow arrow denotes a convolutional layer with 1 × 1 kernels.  
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We can get better parameters after each iteration, and our 
model converges only after 3 iterations. 

The specific architecture we have used for the CNNs is 
illustrated in Figure 1. For each iteration, we put  ∇(𝐴𝑥𝑘 − 𝑦) 
and ∇𝑇𝑉(𝑥𝑘) to a similar pipeline which contains 2 layers. 
Both ∇(𝐴𝑥𝑘 − 𝑦) and ∇𝑇𝑉(𝑥𝑘) are spread to 32 and then 64 
channels. We then add two results together and put them in 
two 3 × 3 convolutional layers to combine 64 channels to 32 
channels, then reduce to 16 channels. Finally, it reduced to 1 
channel by a 1 × 1 convolutional layer, and the result is added 
to the current iteration. 

III. EXPERIMENTS AND RESULTS 

A. Experiments 

We perform a few operations to expand the data capacity 
under condition that the initial acoustic pressure distribution is 
simulated using the public dataset DRIVE [16]. Our training 
set and test set consist 4000 images and 400 images, 
respectively. First, we divided a few complete blood vessel 
images into four equal parts, then did rotational transform and 
superpose two parts randomly. Finally, we import these pre-
processed data into k-Wave toolbox as our initial pressure 
distribution.  

Adam optimizer is used to train our model. Moreover, the 
initial learning rate of our model is 0.004, and we adjust it 
slightly according to the learning situation. The batch size 
equals to 32 and the number of epochs is 300 in our model. 

B. Results  

 Two traditional algorithms are used to compare with our 
method: TR and TV with traditional GD. Fig. 2(a) and (b) 
show the reconstructed image of time reversal (TR) method. 
Since the measurement surface is often irregular and 
incomplete with limited ultrasound transducer coverage, we 
can see there exists a lot of arc-like artifacts across the 
reconstruction images. Fig. 2(c) and (d) show the result of TV 
reconstruction method.  

 Though TV algorithm is able to reconstruct relatively 
accurate images from sparse data, the reconstructed results 
shown above are still not as great as our model especially for 
some capillary parts. The results of TV are obtained after 10 
iterations, while our model shows even better reconstructed 
images after only 3 iterations. 

 

 

Figure 3. Box-plot after 3 iterations using our model. 

 

Fig. 3 shows the Box-plot of our model, both SSIM and 
PSNR are greatly improved after the first iteration. Finally, 
we can find that the mean value of SSIM increases from 
0.2735 (1st iteration) to 0.9540 (3rd iteration) and the mean 
value of PSNR increases from 18.4016 dB to 33.3899 dB after 
3 iterations. 

Below is a table showing the comparison of two examples’ 
PSNR among TR, TV and our model. 

 

 
Figure 2. Performance comparison of two examples among different methods. (a) and (b) show the reconstruction results by using time reversal (TR) 

method, while (c) and (d) traditional total variation (TV) with 10 iterations. Furthermore, (e) and (f) are the images reconstructed using our model. of our 

model. (g) and (h) are Ground-truth (GT) of each example.  
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TABLE I. THE PSNR VALUES OF FIGURE 2 

PSNR (dB) TR TV Ours 

1 17.6558 32.1013 32.307 

2 19.9657 35.5058 37.1162 

 

We also compared SSIM of our model and traditional 
algorithm in TABLE II. 

TABLE II. THE SSIM VALUES OF FIGURE 2 

SSIM TR TV Ours 

1 0.2487 0.9111 0.9545 

2 0.2629 0.9523 0.9636 

 

The PSNR values in TABLE I show that our method with 
only 3 iterations can surpass the performance of TV with 10 
iterations. The SSIM value in Table II further demonstrate the 
superiority of our model.  

IV. CONCLUSION 

In this paper, we introduce deep learning method to 

accelerate the model-based photoacoustic tomography 

reconstruction process and simplify the tedious adjustment of 

parameters. We build a new model that eliminates all hyper-

parameters in iterative procedure. It avoids the time- 

consuming adjustment in model-based methods and speeds up 

the process of reconstruction. We use k-Wave toolbox of 

MATLAB to calculate the gradient of two parts and train 

CNN with Pytorch. The reconstruction results of our model 

show much better performance compared with the results 

reconstructed by TV method with 10 iterations. We will 

further optimize our model by training it with in vivo 

experimental data in the future work. 
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