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Abstract— Cardiac auscultation is the key screening proce-
dure to detect and identify cardiovascular diseases (CVDs). One
of many steps to automatically detect CVDs using auscultation,
concerns the detection and delimitation of the heart sound
boundaries, a process known as segmentation. Whether to
include or not a segmentation step in the signal classification
pipeline is nowadays a topic of discussion. Up to our knowledge,
the outcome of a segmentation algorithm has been used almost
exclusively to align the different signal segments according
to the heartbeat. In this paper, the need for a heartbeat
alignment step is tested and evaluated over different machine
learning algorithms, including deep learning solutions. From
the different classifiers tested, Gate Recurrent Unit (GRU)
Network and Convolutional Neural Network (CNN) algorithms
are shown to be the most robust. Namely, these algorithms can
detect the presence of heart murmurs even without a heartbeat
alignment step. Furthermore, Support Vector Machine (SVM)
and Random Forest (RF) algorithms require an explicit seg-
mentation step to effectively detect heart sounds and murmurs,
the overall performance is expected drop approximately 5% on
both cases.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of
death in developed and developing countries and one of
the major causes of hospitalization. By 2030, almost 23.6
million people will die from CVDs, according to the world
health organization [1]. One possible solution, is a cost-
effective screening of the population, not only to identify
risk groups but also to follow up those who need emergency
care. In this sense, heart sound auscultation represents a
key exam, due to its simplicity and low cost. Although
collecting heart sounds represents a relatively straightforward
task, their interpretation is a challenging task for human
listeners, since heart sounds are faint, their frequency content
is located at the lower end of the audible spectrum. For these
reasons, the design of an autonomous heart sound system
can play an important role in boosting the accuracy and the
pervasiveness of screening for CVDs. Standard approaches
to extract useful information from heart sound recordings
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include an initial signal pre-processing step, which aims
at reducing the impact of noise. After that, the following
two phases are usually implemented: i) signal segmenta-
tion, and ii) signal classification. In particular, heart sound
segmentation consists in the detection of the position and
the boundaries of the fundamental heart sounds, S1 and S2.
Heart sound segmentation plays a fundamental role, as it
allows for the extraction of targeted features corresponding
to the different segments of the signal but it also allows the
detection of extra sounds (S3 and S4), murmurs, clicks, etc.
Recently, deep learning solutions had become the state-of-
art of heart sound classification. A particularly successful
approach is CNN, which could be applied either to the
segmented signal in the time domain, or to its time-frequency
transform. In particular, [2] leverages the segmentation of the
PCG and divides each heart sound recording into segments
of 3 seconds long, all starting in correspondence of an
S1 sound. From such segments, 2-dimensional heat maps
containing the corresponding MFCCs are computed and used
as input of a deep CNN. The intrinsic sequential nature
and periodic behavior of heart sounds has also suggested
the use of deep learning models able to keep track of the
time evolution of time series. In particular, Latif et al. [3]
studied and compared the performance of several RNNs in
classifying heart sound signals. The methods proposed in
[3] leverage the segmentation step by dividing PCG signals
into segments of 2, 5, and 8 complete heartbeats. Then, for
each segment, MFCCs are extracted and fed to the different
RNN classifiers. Other recent approaches using deep learning
algorithms skip completely the segmentation stage and apply
directly classifiers to parts of the PCG signal. In particular, in
[4], segments of duration 5 seconds are extracted sequentially
from the PCG signals, with a constant stride of 1 second.
Then, such segments are used to compute spectrograms and
MFCCs, which are further used as input of a CNN classifier.
Also RNNs have been recently embedded into end-to-end
approaches, i.e., without recurring to signal segmentation
step first. For example, Thomae et al. [5] proposed an
end-to-end deep neural network combining 1-dimensional
convolutional layers and gated recurrent unit (GRU) layers,
where the input signal is entirely fed into the network.

A. Motivation and Contributions

In 2016, the PhysioNet community has organized a chal-
lenge with focus on the development of heart sound clas-
sification algorithms able to discriminate between normal
and abnormal sounds. One of the interesting results and

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 286



conclusions drawn by the organizers of such challenge was
that improved segmentation algorithms should be expected
to be the best point of entry to obtain more significant
improvements in abnormal heart sound detection tasks [6].
Motivated by this remark and by the different approaches
recently appeared in the literature for abnormal heart sound
detection, some of which are skipping a segmentation step,
this work aims at assessing and quantifying the impact of
a heart sound segmentation step on the performance of
different families of heart sound classification algorithms.
Note that the focus of this work is on the evaluation of
classifiers that simply determine if a heart sound recording
is normal or abnormal, since a more refined classification
of the particular heart condition affecting a given patient is
expected to rely on a segmentation step, for example, in order
to determine the exact source of the murmur. The rest of the
paper is organized as follow s. In Section II, the experimental
methodology is described. In Section III, configuration and
setup are presented for each model. In Section IV results are
showed. Finally, conclusions are withdrawn in Section V.

II. METHODOLOGY

A. Materials

In this work, the database from the 2016 PhysioNet/ Com-
puting in Cardiology Challenge [7] is used. The database
provides a large collection of heart sound recordings, di-
vided into eight different training sets. The Physionet/Cinc
Challenge provided 3153 heart sounds. From this, 363 heart
sounds were discarded by the following reasons: 87 records
from Folder E are not heart sounds; 276 records do not have
annotations or they are not properly annotated, therefore not
considered in this study. Although signals were collected at
different sampling frequencies (800Hz, 1000Hz, 2000 Hz,
3000Hz, 4000 Hz, 8000 Hz or 22050 Hz) no details con-
cerning aliasing and imaging effects generated are provided.

B. Training and Testing Data

Aiming to get statistically significant results, a large
dataset is created. In order to do so, the different constituent
datasets of the 2016 Physionet/Computers in Cardiology
Challenge (discussed in Section II-A) are merged. A total
of 764 subjects and 3153 recordings are at disposal in this
study. In order to increase the size of our dataset each heart
sound is split into continuous segments of three seconds,
through the provided annotations. Moreover, each segment
starts at S1 state sample in order to ensure alignment during
the classification process. As a result, our final dataset is
composed by 17089 heart sound segments. When no explicit
segmentation step is considered, heart sound segments are
free to start in any state sample. In this case, our final
dataset is composed by 19565 heart sound segments. During
the process, 70% of healthy and unhealthy patients (and
their corresponding audio records) are randomly used for
training and the remaining ones are used for testing purposes.
During the testing phase, segments from the same patient are
analysed individually by one of the tested classifiers. As a
result, a percentage of segments are classified as abnormal

and the remaining segments as normal. In order to outcome
a detection decision, i.e. the presence or not of murmur
waves in the recording, a decision is made by setting an
upper-bound limit over the distribution, i.e. if at least m%
of the segments are classified as abnormal then the entire
audio signal is classified as an abnormal heart sound signal,
otherwise it is classified as a normal heart sound signal.
Finally, in order to extract statistically significant results,
the aforementioned procedure is repeated ten times. Note,
that the generated training and testing sets at each run have
different ratios of healthy and unhealthy records.

C. Pre-processing and Feature Extraction

The majority of the frequency components of heart sounds
and murmurs are between 50 and 500Hz and higher fre-
quencies are of little clinical significance, hence a band-pass
Butterworth filter with cut-off frequencies at 50− 850 Hz
was used. Furthermore, heart sound signals are downsampled
from 2000Hz to 1000Hz and then normalized between -1
and +1. From the pre-processed PCG signal, MFCCs are
extracted, as they represent the preferred features used by
the majority of heart sound classification algorithms present
in the literature (see, for example, [8] and [2]). During the
windowing stage, overlapping sliding windows of 25 ms ran
over segments of three seconds with strides of 10 ms. A total
of 13 MFCC filterbanks per sliding window are computed,
i.e, 300 MFCCs for each input signal of three seconds are
extracted.

III. MODELS

A. GRU Model

Given a sequence of input vectors X = (x1, ...,xT ) of length
T, a standard GRU network processes sequentially each input
vector x and generates a sequence of hidden state vectors
H =(h1, ...,hT ). Afterwards, hT is feed into a fully connected
(FC) layer, where a soft-max function is used in order to
compute the output probability distribution.

1) Configuration and Setup: Regarding the GRU net
design, the weight matrices are set to ℜ16×13. FC weight’s
are set to ℜ2×16. The bias vectors and the state memory
vector are set to ℜ16×1, respectively. The weight matrices
of GRU, FC layers and the bias vectors are initialized using
a uniform random distribution. Furthermore, h0 is the zero
vector, i.e., every component is set to zero.

2) Objective Function and Optimizer: As for the loss
function, the binary cross entropy is used and minimized
using the Adam optimizer algorithm. The step size is set
to 0.01, the exponential decay rate for the first and second
moment are set to 0.9 and 0.999, respectively. In order to
avoid any division by zero during the computation of the
cost function, a small scalar perturbation (10−6) is added in
the computation.

3) Training, Cross-validation and Model Selection: In the
training phase, heart sound segments are shuffled randomly
according to a uniform random distribution at the beginning
of each epoch, and each segment is processed individually
and sequentially (batches of size one). A cross-validation
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dataset composed by 5% of balanced data is used. The
training phase lasts for 25 epochs, and only the model that
achieves the highest score (an average of sensitivity and
specificity performances) in the cross-validation dataset is
saved and further used during the testing phase.

B. CNN Model

1) Configuration and Setup: The CNN architecture was
empirically selected. Several network sizes were tested,
ranging from millions of weight parameters up to thousands
of weight parameters, but without any significant score
difference. Therefore, the simplest CNNs architecture was
selected, consisting of 39426 parameters. In order to classify
each heart sound segment, the processed MFCCs image of
size 300× 13 is fed into the network. In the first layer, 32
feature maps are generated. These are further convolved by
another set of 32 independent filters. Since no zero padding
techniques are being used, the image shrinks along the
network, leading to feature maps of size 298× 11, in the
output of the second layer. Before feeding the output of the
second layer into the third layer, a two-dimensional pooling
operation is applied, in order to compress the most relevant
features on the image. As a result, feature maps of size 59×5
are outputted at the third layer. Finally another set of 32
filters is applied leading to an output feature map of size
57×3. The outputs of all convolutional layers are followed
by a ReLU activation function, which operates entry-wise.
Furthermore, the last output feature map is compressed again
by applying a two-dimensional pooling operation of (5×2),
leading to tensor of shape (11×1×32). The tensor is then
flattened, creating a vector composed by 352 elements. This
vector is then fed into a multi-layer perceptron, where the
input layer is made of 352 neurons, the hidden layer is made
of 32 neurons and the last layer is made of 2 neurons, one
for each possible class. A soft-max function is also used in
order to compute the output probability distribution.

2) Objective Functions or Optimization Functions: The
filter weights are randomly initialized. These are further
optimized, using the binary cross entropy as a loss function
and the Adam optimizer algorithm is used to search for the
optimal solution. The learning rate and ε are set to 10−5,
10−6 respectively during the entire learning phase.

3) Cross-validation and Model Selection: During the
training stage, all the samples of the training data were
shuffled, and batches of size 128 were extracted from the
shuffled training data. In order to evaluate the performance
of the model, a validation dataset composed by 10% of the
training data is used. The CNN is trained over 50 epochs, and
at the end of each epoch, the CNN is evaluated and saved.
Finally, at the end of the training phase, only the model that
obtains the lowest loss value in the validation data is retained
and used in the testing phase.

C. SVM Model

1) Configuration and Setup: An SVM with a radial basis
function (RBF) kernel is used. The data is fed into an SVM,
by first transforming an MFCCs image of size 300×13 into
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Fig. 1. Sensitivity and Specificity results provided by a GRU (on the left
side) and CNN net (on the right side) based algorithm. Ten independent trials
have been made, each symbol depicts a result computed from a independent
test set. The PCG classifications are made based upon the best predefined
threshold decision. The black circles display the results using the annotations
provided by Physionet/Cinc Challenge. The white circles display the results
without the support of any kind of annotation.

a column vector of size 3900, a process known as vector-
ization. To adjust the SVM parameters, we use a generic
function that tunes hyperparameters of statistical methods
using a grid search over supplied a parameter ranges.

D. RF Model

1) Configuration and Setup: The data is fed into an
RF model, by first transforming an MFCCs image of size
300×13 into a column vector of size 3900. To find the best
values for the hyperparameters, we train the model several
times, each time using different model hyperparameters.
After training, the model is evaluated on a validation dataset
composed by 10% of the training data. We then compare
the performance in the validation dataset, and choose the
hyperparameters with which the best accuracy was obtained.
After a first phase of hyperparameter tunning, we use the
same hyperparameters on all experiments performed in this
work.

IV. RESULTS

In this section, the impact of an explicit segmentation is
measured on four different heart sound classifiers: GRU,
CNN, SVM and RF. Two different avenues are compared:
in the first one, the expert annotations are used to split the
PCG signal into continuous and non-overlapping segments
of three seconds, and starting at the beginning of an S1
state sample (black circles in Figures 1 and 2). In the
second avenue, algorithms are asked to accomplish the same
aforementioned task but without the support of any kind
of human-made annotation. The PCG input signal is again
split into continuous and non-overlapping segments of three
seconds, starting immediately from the first sample. As a
result, segments are free to start in any state sample (S1,
Sys, S2, Dias). These results are displayed in Figures 1 and
2 with white circles. In the first experiment, the GRU net
based algorithm explained in Section III-A is used to detect

288



0.5 0.6 0.7 0.8 0.9
0.7

0.8

0.9

1

Sensitivity

Sp
ec

ifi
ci

ty

0.4 0.5 0.6 0.7 0.8
0.7

0.8

0.9

1

Sensitivity

Sp
ec

ifi
ci

ty

Fig. 2. Sensitivity and Specificity results provided by a SVM (on the top)
and RF based algorithm (on the bottom), respectively. Ten independent trials
have been made, each symbol depicts a result computed from a independent
test set. The PCG classifications are made based upon the best predefined
threshold decision. The black circles display the results using the annotations
provided by Physionet/Cinc Challenge. The white circles display the results
without the support of any kind of annotation.

abnormal heart sounds. The results show an unexpected
similarity between the two strategies, see Figure 1. A GRU
net with and without a segmentation step achieved an average
overall performance of 0.838±0.002 and 0.845±0.001 with
a m = 30%, respectively. Therefore, the standard explicit
segmentation step (heart beat alignment), is not necessary or
needed to train efficiently a GRU net algorithm to detect
abnormal heart sounds, more specifically heart murmurs.
This is in part justified by the reset and update gates of the
GRU net which aim to keep a sort of consistent memory over
time. Using such gates, the GRU net memorizes important
events on the three seconds long MFCC segments and forget
irrelevant facts, which are not considered important for the
classification task. Furthermore, splitting the PCG signal
into shorter audio segments of three seconds is made in
order to surpass the lack of long-term memory of these
networks, and also by the fact that murmur waves are quasi-
periodic events, therefore likely to exist in every heartbeat
of an unhealthy patient. In our second experiment, the CNN
based algorithm, explained in Section III-B is used to detect
abnormal heart sounds. The results show an unexpected
similarity in terms of sensitivity and specificity over the
two different scenarios, see Figure 1. A CNN net with and
without a segmentation step achieved an average overall
performance of 0.850 ± 0.001 and 0.841 ± 0.002 with a
m = 10%, respectively. Therefore, the standard explicit
segmentation step (heart beat alignment) is not necessary
or needed to train efficiently a CNN algorithm to detect
abnormal heart sounds, at least for murmur detection tasks.

This is in part explained by the fact that CNNs are well
known to be invariant to audio time shifts. Therefore, it is
not important to have audio alignment, i.e. audio segments
starting at the beginning of an S1 state sample, as long as
murmur events are present in the input audio segment. From
our previous analysis, no expensive human made annotations
are needed to train effectively GRU and CNN nets. Or
perhaps a more refined usage of the segmentation outcome
is needed in order to boost significantly the score of GRU
and CNN nets. In our third and forth experiment, the SVM
and the RF based algorithms, explained in Section III-C and
III-D respectively are used to detect abnormal heart sounds.
A SVM with and without a segmentation step achieved an
average overall performance of 0.850±0.001 and 0.80±0.02
with a m = 10%, respectively. Furthermore, a RF with and
without a segmentation step achieved an average overall
performance of 0.810 ± 0.001 and 0.76 ± 0.01 with a m
= 10%, respectively. This is in part explained by the fact
that such models, do not explore efficiently the temporal
dependencies among events in a PCG signal.

V. CONCLUSION

In this paper, the impact of an explicit segmentation step
on the classifier’s ability to detect abnormal heart sounds
is tested and measured experimentally. First, it is observed
that the standard explicit heart sound segmentation step is
not needed when GRU net or CNN classifiers are used to
detect cardiac murmurs. Perhaps, a more robust segmentation
step is needed and so it should be proposed by the scientific
community, in order to completely address this important
thematic. Secondly, SVMs and RFs are shown to be more
dependent of an explicit segmentation step, in our experi-
ments, the overall score dropped on average 5% on both
algorithms.
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