
  

   

Abstract— Extensive efforts have been recently devoted to 

implement fast and reliable algorithms capable of assessing the 

physiological response of the organism to physiological stress. 

In this study, we propose the comparison between model-free 

and linear parametric methods as regards their ability to detect 

alterations in the dynamics and in the complexity of 

cardiovascular and respiratory variability evoked by postural 

and mental stress. Dynamic entropy (DE) and information 

storage (IS) measures were calculated on three physiological 

time-series, i.e. heart period, respiratory volume and systolic 

arterial pressure, on 61 healthy subjects monitored in resting 

conditions as well as during head-up tilt and while performing 

a mental arithmetic task. The results of the comparison suggest 

the feasibility of DE and IS measures computed from different 

physiological signals to discriminate among resting and stress 

states. If compared to the model-free algorithm, the faster 

linear method appears to be capable of detecting the same (or 

even more) statistically significant variations of DE or IS 

between resting and stress conditions, being thus in perspective 

more suitable for the integration within wearable devices. The 

computation of entropy indices extracted from multiple 

physiological signals acquired through wearables will allow a 

real-time stress assessment on people in daily-life situations. 

I. INTRODUCTION 

In recent years, an increasing interest has been reported in 
the literature towards the study of the physiological response 
of the organism to mental and postural stress, aimed at 
characterization of the complex behavior of the autonomic 
nervous system (ANS), also given the number of diseases 
that are associated with stress [1]. A common method of 
analysis employs an assessment of the beat-to-beat dynamics 
of cardiovascular variables from finite-length time-series that 
quantify these variables over time. Among such variables, the 
most important and widely studied is heart rate variability 
(HRV) which is typically assessed from R-R intervals (RRI) 
of electrocardiogram (ECG) recordings [2]. Time-series of 
about 5 minutes (300 beats) are usually examined, being this 
duration recognized as a standard for HRV analyses (short-
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term HRV) thanks to the good trade-off between practical 
purposes (duration of recordings under steady state 
conditions) and the information contained for the assessment 
of cardiovascular control [2]. Moreover, HRV and the 
autonomic system are strongly affected by several coexisting 
control mechanisms, which involve the influence of 
respiration and systolic blood pressure contributions [3]. 
Short-term cardiovascular time series are typically analyzed 
making use of time-domain, frequency-domain or 
information-theoretic measures [4]. The latter have attracted 
an ever growing interest allowing to reliably assess ANS 
complexity and regularity, as well as to investigate the nature 
of the interaction between biosignals [2]–[4]. In particular, 
dynamic entropy (DE) and information storage (IS) are two 
measures able to respectively quantify the information 
contained in the dynamics of a time series and its regularity 
[5]. However, information-theoretic measures are usually 
computationally more costly than time- or frequency domain 
indices or than correlation-based approaches [6]. For this 
reason, the main efforts in recent years have been devoted to 
the implementation of algorithms presenting, at the same 
time, a reduced computational cost and an acceptable loss of 
precision in entropy estimation [5].  

In this paper, a comparison between two estimation 
methods for information-theoretic measures, i.e. a non-linear 
model-free estimator based on nearest neighbor analysis and 
a linear parametric estimator, is presented in order to assess 
the degree of agreement, taking into account their 
computational costs as well. In previous works, we have 
analyzed classical HRV parameters in time and frequency 
domain and compared conditional entropy measures 
calculated starting from RRI time series [4], [7]. Here, we 
expand such investigation studying DE and IS on multiple 
time-series (RR, respiratory and systolic blood pressure) for a 
more complete assessment of strengths and limitations of the 
two approaches. The final aim is to identify the method 
allowing the best trade-off between ability to monitor the 
response to stress and computational costs. 

II. MATERIALS AND METHODS 

A. Experimental protocol 

The study has been carried out on 61 healthy subjects (37 
female, 24 male, age 17.5 ± 2.4 years), all normotensive and 
within the normal range of body mass index (19-25 kg m−2) 
[1]. Data were acquired in four physiological conditions: (i) a 
baseline resting phase (R1) lasting 15 min with the subjects 
lying in supine position; (ii) a head-up tilt (T) phase of 8 min 
obtained tilting the motorized table to 45° to evoke mild 
orthostatic stress; (iii) a second supine resting phase (R2) 
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lasting 10 min; (iv) a 6-min mental arithmetic (M) test during 
which the subjects were asked to perform mentally (without 
verbalization) quick mathematical operations to evoke mental 
stress. Physiological signals acquired synchronously on the 
subjects consisted of (i) ECG recorded through a horizontal 
bipolar thoracic lead (CardioFax ECG-9620, NihonKohden, 
Japan), (ii) continuous arterial blood pressure recorded on the 
finger through the volume-clamp method (Finometer Pro, 
FMS, Netherlands), and (iii) respiratory volume signal 
acquired using thoracic and abdominal belts via respiratory 
inductive plethysmography (RespiTrace 200, NIMS, USA). 
The sampling rate of all the acquired signals was 1 kHz. 
Further details on the experimental protocol can be found in 
[1]. All the procedures were approved by the Ethical 
Committee of the Jessenius Faculty of Medicine, Comenius 
University, Martin, Slovakia and all the participants signed a 
written informed consent. 

B. Time series extraction 

The time-series measured from the acquired signals 
consisted of stationary segments covering a duration of 300 
heartbeats, extracted at least 2 min after the start of each 
physiological condition to avoid transition effects. RR time 
series were extracted from the ECG signal as the temporal 
distance between the n-th and (n+1)-th QRS apexes [4], while 
the respiratory signal (RESP) was sampled at the onset of 
each RR interval and the systolic arterial pressure (SAP) was 
taken as the maximum value of the blood pressure signal 
within a given RR interval [1]. All series were normalized to 
zero mean and unit variance before computing the entropy 
measures. 

C. Entropy measures 

Considering a stationary stochastic process 𝑋, let us 
denote as 𝑋𝑛 and 𝑿𝑛

𝑚 = [𝑋𝑛𝑋𝑛−1 ⋯ 𝑋𝑛−𝑚+1] = [𝑋𝑛 𝑿𝑛−1
𝑚−1] 

the variables describing one single state of the process and 
the collection of m states. The entropies of these variables are 
defined as [5]: 

 𝐻(𝑋𝑛) =  −𝑬[log 𝑝 (𝑥𝑛)] (1a) 

 𝐻(𝑿𝑛
𝑚) =  −𝑬[log 𝑝 (𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑚+1)] (1b) 

where 𝑬[∙] is the expectation operator and p(∙) the probability 
density. The measure in (1a) quantifies the ‘static’ 
information contained in one single state of the stationary 
process, while the measure in (1b) reflects the ‘dynamic’ 
information content in m states of the process. The second 
measure, which we denote as dynamic entropy, 𝐷𝐸(𝑋) =
𝐻(𝑿𝑛

𝑚), is related to the entropy rate of the process defined 

as lim
𝑚→∞

1

𝑚
𝐻(𝑿𝑛

𝑚). The two measures are related to the 

information storage (IS), quantifying the amount of 
information carried by the present that can be explained by 
the past history of the process [8]: 

𝐼𝑆(𝑋) = 𝐼(𝑋𝑛; 𝑿𝑛−1
𝑚−1) = 𝐻(𝑋𝑛) + 𝐻(𝑿𝑛−1

𝑚−1) − 𝐻(𝑿𝑛
𝑚)  (2) 

where 𝐼(∙;∙) denotes mutual information; eq. (2) holds 
exactly if 𝑋 is a Markov process of order m-1. The 
information storage is an important measure of the regularity 
of a stochastic process [5]. 

In this work, we estimate DE and IS starting from a time 
series 𝑥 = {𝑥1, … , 𝑥𝑁} of length N, considered as a realization 

of the process 𝑋. The first considered estimation method 
(herein referred as knn) is a non-parametric approach using 
nearest neighbor metrics, which exploits the intuitive notion 
that the local probability density around a data point is 
inversely related to the distance between the point and its 
neighbors [5]. With this approach, the DE can be estimated 
computing distances between m-dimensional patterns 
extracted from the time series as realizations of 𝑿𝑛

𝑚 as [5] 

 𝐷𝐸𝑘𝑛𝑛(𝑋) = −𝜓(𝑘) + log(𝑁 − 𝑚) + 𝑚〈𝑙𝑜𝑔𝜖𝑛,𝑘〉, (3) 

where 𝜖𝑛,𝑘 denotes twice the distance between the n-th 

realization of 𝑿𝑛
𝑚 and its k-th nearest neighbor, k is the 

number of neighbors counted, 〈∙〉 denotes average over the N-
m+1 realizations, and 𝜓(∙) is the digamma function; note that 
distances are computed using the maximum norm. On similar 
grounds, and using a distance-projection approach that 
compensates for estimation bias, the IS is estimated as [5]: 

𝐼𝑆𝑘𝑛𝑛(𝑋) = 𝜓(𝑘) + log(𝑁 − 𝑚) − 〈𝜓(𝑛𝑥) + 𝜓(𝑛𝐱)〉, (4) 

where 𝑛𝑥 and 𝑛𝐱 are the number of patterns whose distance 
from the n-th realizations of 𝑋𝑛 and of 𝑿𝑛−1

𝑚−1, respectively, is 
smaller than 𝜖𝑛,𝑘, with 𝜖𝑛,𝑘 as in (3). 

The second estimation method (herein referred as lin) 
follows a linear parametric approach relying on the fact that 
many real-word data tend to the Gaussian distribution. For a 
stationary Gaussian process, entropies can be computed 
exactly from the covariance matrices of the variables 
sampling the process. Specifically, given that the entropy of a 

d-dimensional variable 𝑾 is 𝐻(𝑾) = 0.5 log(2𝜋𝑒)𝑑 |Σ𝑾|, 
where |Σ𝑾| is the determinant of the covariance matrix of 𝑾, 
the utilization of this relation in (1b) and (2) leads to estimate 
the DE and IS as: 

 𝐷𝐸𝑙𝑖𝑛(𝑋) =
1

2
log(2𝜋𝑒)𝑚 |Σ̂𝑿𝑛

𝑚|, (5) 

 𝐼𝑆𝑙𝑖𝑛(𝑋) =
1

2
log

Σ̂𝑋𝑛|Σ̂
𝑿𝑛−1

𝑚−1|

|Σ̂𝑿𝑛
𝑚|

, (6) 

where Σ𝑋𝑛
= 𝜎𝑋

2 is the variance of 𝑋 and the covariance 

estimates Σ̂ are obtained with the Blackman-Tukey estimator. 
In agreement with previous works on short-term 
cardiovascular variability [4], the dimension of the vector 
variables used for dynamic analysis was set to m=2, while the 
number of neighbors for the knn estimator was set to k=10.  

D. Statistical analysis 

For both knn and lin methods, the entropy measures 
described in the previous subsection were computed on the 
three time series (RR, RESP and SAP) extracted from the 61 
subjects for each of the four phases (R1, T, R2 and M). For 
carrying out the statistical analyses, parametric tests were 
used since the hypothesis of normality of the distribution of 
each measure was not rejected according to the Anderson-
Darling test for almost all the analyzed time-series. For each 
entropy measure (DE or IS) two-way analysis of variance 
was carried out, followed by a post-hoc Student t-test to 
compare the means of distributions obtained in a stress 
condition (i.e., T or M) with those relevant to the 
corresponding resting state (R1 or R2) for each estimator (knn 
or lin). The same test was applied to compare the 
distributions of DE or IS obtained with the two estimators 
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given the experimental condition. For all inferential statistics, 
p values below 0.05 were regarded as statistically significant. 

III. RESULTS 

A. Entropy measures 

Figures 1 to 3 depict, for each physiological time series 
(RR, RESP and SAP), the distributions of DE (panels a) and 
IS (panels b) across the 61 subjects assessed in the four 
conditions (R1, T, R2 and M) using knn (grey boxplots) and 
lin (white boxplots) estimators.  

 
Figure 1.  Boxplot distributions of (a) DE and (b) IS indexes computed on 

RR time series during rest (R1, R2) and stress (T, M) conditions, using knn 
(gray) and lin (white) estimators. Statistical tests: #, p<0.05 R1 vs T and R2 

vs M; *, p<0.05 knn vs lin; °, two-factor interactions: p<0.05. 

 
Figure 2.  Boxplot distributions of (a) DE and (b) IS indexes computed on 
RESP time series during rest (R1, R2) and stress (T, M) conditions, using 

knn (gray) and lin (white) estimators. Statistical tests: #, p<0.05 R1 vs T and 

R2 vs M; *, p<0.05 knn vs lin. 

The analyses were focused on assessing the statistically 
significant differences between rest and stress conditions (R1 
vs T and R2 vs M) and between estimators at a given 
condition. The investigation carried out on the RR time series 
(Fig. 1) evidenced, for both estimators, a decrease of DE and 
an increase of IS after postural stress elicitation. The linear 
estimator detected also a reduction of DE and an increase of 

IS during mental stress. Analyzing the RESP time series (Fig. 
2), both estimators evidenced a decrease of DE and an 
increase of IS during tilt and a decrease of IS during mental 
stress. As regards the SAP time series (Fig. 3), an increase of 
DE and a lower IS were observed during mental stress by 
both estimators, while an increased IS after the orthostatic 
maneuver was detected only by using the linear estimator. 

 
Figure 3.  Boxplot distributions of (a) DE and (b) IS indexes computed on 
SAP time series during rest (R1, R2) and stress (T, M) conditions, using knn 

(gray) and lin (white) estimators. Statistical tests: #, p<0.05 R1 vs T and R2 

vs M; *, p<0.05 knn vs lin. 

The comparison between the two estimators computed on 
RR time series (Fig. 1) evidenced that the linear method 
produces higher estimates of DE and lower estimates of IS 
(except during initial rest and postural stress). These 
differences were emphasized and always statistically 
significant for the RESP time series (Fig. 2). On the contrary, 
trends indicating higher estimates of both DE and IS obtained 
using the linear estimator were observed for the SAP time 
series (Fig. 3), with statistical significance reached during R1 

and T for IS. Only for IS computed on RR time series and for 
R1 vs T the two-way analysis of variance reported statistically 
significant two-factor interactions. 

B. Computational cost 

The average computation time of the entropy measures on 
732 iterations (3 time series in 4 different physiological 
conditions for the 61 subjects) was about 0.36 ms per 
iteration for the linear estimator, compared to 10.9 ms per 
iteration of the k-nearest method, i.e. around two orders of 
magnitude lower. Such computational times were obtained 
on a notebook equipped with an Intel Core i5-2410M CPU 
(2.3 GHz with Turbo Boost up to 2.9 GHz), 8 GB RAM, 256 
GB SSD, Windows 10, MATLAB R2019b. These results are 
in line with those obtained in an our previous work [7] in 
which we only compared computational time of lin and knn 
conditional entropy measures on RR time series. 

IV.  DISCUSSION 

The decrease of the information contained in the RR time 
series and the increase of its regularity during orthostatic 
stress are in agreement with previous findings achieved 
calculating static entropy and conditional entropy on RR time 
series [1], [9] and confirm that heart period dynamics are 

292



  

strongly affected by postural stress, with a significant 
reduction in complexity. The increased regularity during tilt 
reflects a widely known behavior of heart rate variability due 
to an activation of the sympathetic nervous system and 
inhibition of parasympathetic nervous system activity, which 
have a regularizing effect on the cardiac dynamics [9]. The 
increased regularity may be also related to the reduced 
information transfer from RESP to RR reported in [3]. The 
analyses on RESP time series indicate higher IS during 
orthostatic stress and lower IS during mental stress; similar 
results were found respectively in [9] and [1], and could be 
related to the increased tidal volume and slightly lower 
breathing rate during tilt and to the increased breathing rate 
during mental arithmetic. Postural stress does not affect SAP 
time-series dynamics; on the other hand, an increased DE and 
a reduced regularity is observed during arithmetic test. This 
may be ascribed to cortical mechanisms related to mental 
stress eliciting the changes in the patterns of autonomic 
activation following a cognitive load, including vasomotor 
reactions that are reflected in SAP variations [1], [3].  

The analyses were also aimed at comparing the two 
estimators for each measure, time series and condition. With 
regard to RR variability, the linear estimator returned higher 
estimates of DE and lower estimates of IS, reflecting 
respectively higher information content and lower 
predictability of the time series. These findings suggest the 
presence of non-linear dynamics in HRV time series at rest 
and during mental stress; the only exception to these trends, 
i.e. the distribution of IS during postural stress, agrees with 
previous findings showing that the strength of nonlinear 
dynamics in HRV is reduced during tilt in young people [10]. 
The higher information content and lower regularity were 
observed even more evidently for the RESP time series in all 
conditions, confirming previous work highlighting that 
respiration is a strongly non-linear process [11]. 

Analyzing all the results, it is worth noting that all the 
statistical differences identified by the knn method are also 
detected by the linear one, with the advantage of a strong 
reduction of the computational times. Moreover, the linear 
estimator reports some changes that are in contrast not shown 
using the model-free approach; while this result could be 
exploited in practical application to augment the 
discriminative capability of entropy measures, it may be 
somewhat misleading as it can be due to non-linear dynamics 
which are present in the phenomenon but are not taken 
properly into account by the lin estimator.  

V. CONCLUSION 

Our results suggest the viability to exploit dynamic 
entropy and information storage measures computed on 
different physiological time series to discriminate among 
resting state and physiological challenges (orthostatic stress, 
cognitive load). This observation confirms the practical  
importance of synchronously acquiring several biosignals 
from different body locations (and not just one) using 
wearable systems, exploiting the so-called network 
physiology approach [6], [12]. A limitation of the study 
consists in the fact that, even if statistically significant 
differences have been found in most cases, the distributions 
mostly heavy overlap, and thus a clinically useful threshold 
cannot be extracted straightforwardly to discriminate rest 

from stress; the use of multiparametric classifiers is 
envisaged to better explore this possibility. Moreover, our 
analyses highlighted the feasibility to employ a faster and less 
power and time-consuming method to compute entropy 
measures exploiting a linear Gaussian approximation. This 
could have practical implications and open the way to the 
implementation of the linear algorithms for DE and IS 
estimation within the firmware of mobile or wearable devices 
or within fitness or medical apps for smartphones or 
smartwatches, to allow a real-time assessment of the stress 
level of people during daily-life situations [13], [14]. Another 
future activity could investigate on the application of the 
entropy measures on shorter HRV time series, i.e. the so-
called “ultra short-term HRV”, even easier to acquire using 
wearable devices, in order to assess their reliability if 
compared to short-term gold standard [15].  
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