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Abstract— Measuring the respiration and heart rate unob-
trusively in home settings is an important goal for health
monitoring. In this work, use of a pressure sensitive mat was
explored. Two methods using body morphology information,
based on shoulder blades and weighted centroid, were devel-
oped for respiration rate (RR) calculation. Heart rate (HR)
was calculated by combining the frequency information from
different body regions. Experimental data were collected from
15 participants in a supine position via a pressure sensitive
mat placed under the upper torso. RR and HR estimations
derived from accelerometer sensors attached to participants’
bodies were used as references to evaluate the accuracy of the
proposed methods. All three methods achieved a reasonable
estimation compared to the reference. The root mean squared
error of the proposed RR estimation methods were 1.32 and
0.87 breath/minute respectively, and the root mean squared
error of the HR estimation method was 5.55 bpm.

I. INTRODUCTION

Physiological parameters such as heart rate (HR), respi-
ration rate (RR), blood pressure, and body temperature are
indicators of the health status of an individual. Among these
vital signs, RR and HR are the most important since signifi-
cant changes in these parameters can be strong predictors of
adverse events such as cardiac arrest, stroke and unplanned
intensive care unit admission [1]. Since many adverse cardio-
vascular and respiratory events can occur outside of clinical
settings, and in particular during sleep [2], it is desirable to
be able to monitor the vital signs of at-risk individuals when
they are in a lying position. Conventional techniques for RR
and HR measurement, based on skin contacting electrodes
placed at the chest or abdomen [3], can be obtrusive and
unsuitable for long-term monitoring outside clinical settings
[4]. As a result, in recent years, unobtrusive monitoring
approaches based on ballistocardiography, laser, camera,
radio, and ultrasound have increasingly been explored.

Pressure sensitive mats (PSMs) are among the many
different unobtrusive monitoring techniques which have been
investigated. To date, previous RR estimation studies on
PSMs have been based on analysis of one-dimensional
signals derived from the PSM and therefore did not account
for spatial variations in signal intensity, which may impact
robustness and reliability. Moreover, robust HR estimation
from PSMs is challenging because the power of the heartbeat
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signal is much lower that of the breathing signal. This means
that it has an inherently lower signal-to-noise ratio (SNR).

In this paper, we explore new methods to continuously
and robustly estimate the RR and HR of individuals lying
on a PSM. To accomplish this we treat the data collected
from the PSM as a two-dimensional signal, emphasizing the
region of interest (ROI) positioning and shape variation.

II. EXPERIMENTAL SETUP

Data were collected from 15 adult participants (9 males
and 6 females). The median of the participants’ age and BMI
are 37 and 25.8 respectively. During the tests, participants
were asked to lie stationary in a supine position. In addition,
the participants were asked to maintain normal breathing
during the 3-minute long measurement. The sensor used
for data acquisition was the CONFORMat system (Tekscan
Inc., Boston MA, USA) which is a bi-dimensional pressure-
mapping sensor, that was placed under the upper torso.
Tekscan contains a 42 × 48 array of discrete pressure
sensors whose signals are quantified on a scale from 0 to
255 with a sampling rate of 50 Hz. A detailed description
of the experimental protocol can be found in [5]. The
Experiment Protocol involving human subjects described in
this paper was approved by the Philips Internal Committee
for Biomedical Experiments (Reference: ICBE-2-27345).

III. RESPIRATION RATE AND HEART RATE
ESTIMATION METHODS

A. Accelerometer reference

In this study, the estimation derived from an accelerometer
sensor (LIS344ALH, STMicroelectronics, Geneva, Switzer-
land) was considered to be a reference to calculate the
accuracy of the RR and HR estimation from the PSM.
Therefore, a reliable estimation from the accelerometer is
very important. The raw signals were extracted from the
3-axes channels of the accelerometers placed on the body.
To be specific, the channel chosen for RR was the sum of
the three axes of the accelerometer placed on the left lower
abdomen. And the channel chosen for HR was the z-axis of
the accelerometer placed on the right thigh above the knee.
The mentioned sensors locations and channels were selected
for their robust and consistent estimation, after careful and
detailed analysis of different options. The orientation of the
three accelerometers’ axes can be found in [5].

Since respiration signal and heartbeat signal are nonsta-
tionary, it is necessary to consider both time and frequency
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when estimating the RR and HR. Frequently used time-
frequency analysis methods are short-time Fourier trans-
form (STFT), continuous wavelet transform (CWT) and syn-
chrosqueezing transform (SST) [6]. Compared with STFT,
CWT and SST have higher time domain resolution, which
was crucial for our task. However, both CWT and SST were
affected by the problem of harmonics. Especially for some
participants, the amplitude of the harmonics were similar in
magnitude to the fundamental frequency component in the
whole measurement. Therefore, we need to distinguish the
fundamental frequency component and harmonics through
frequency domain analysis. The de-shape synchrosqueezing
transform (DSST) uses cepstrum and spectrum to distinguish
the fundamental frequency from the harmonics [7]. During
the estimation, a 20-second window with a 1-second shift
was implemented. All analysis was performed in MATLAB
R2020a (MathWorks, Natick MA, USA). A comparison be-
tween the results of SST and DSST is shown in Fig. 1. It can
be clearly seen that the result of SST (solid line) is influenced
by the harmonic of the HR during the measurement while the
DSST (dotted line) successfully estimates the fundamental
frequency component. Similar results were also obtained for
frequencies in the RR range (not shown in the figure).

After implementing DSST, the estimations derived from
the accelerometers were post-processed to remove the outlier
values which are greater than 1.5 interquartile ranges above
the upper quartile or below the lower quartile. For the
example output in Fig. 1, the detected outliers are marked
with filled circles.

Fig. 1: Comparison between the SST and DSST methods for
HR estimation.

B. RR estimation from the PSM based on the ROI (i.e.
shoulder-blade based method)

The first method for RR calculation is composed of
four main steps: torso segmentation, ROI positioning, signal
extraction, and respiration rate estimation.

1) Torso segmentation: Since both the torso and the arms
are contained in the raw data (see Fig. 2a), segmenting the
torso is helpful in reducing interference. A growth region
algorithm was used for segmentation. During segmentation,
the seed was set as the location of maximum pressure in the
frame. In addition, the centroid of the current segmentation
result was stored and compared with the previous one to

ensure accuracy. If the distance between two centroids was
larger than a prescribed threshold (3 pixels), the current
result was rejected. With this computation, the torso contour
was successfully found in every frame. The only assumption
applied in the segmentation process was that the centroid of
the torso in the first frame should approximately be located
in the middle of the x-axis. This assumption was consistent
with the expected positioning of individuals on the PSM and
guaranteed that the segmentation was initiated successfully.
An example of a segmentation result is shown in Fig. 2b.

Fig. 2: An example of torso segmentation. (a) Raw frame.
(b) Torso segmentation result. The filled stars and circle,
mark the locations of the shoulder blades and the weighted
centroid, respectively.

2) ROI positioning: We apply a signal extraction method
which is distinguished from previously explored approaches
since it is focused on the positioning of the ROI based
on image analysis. After trying several potential candidates,
we noticed that the regions containing the shoulder blades
always detected the signal with good quality. Since the
regions at the shoulder blades typically had the highest
pressure intensity, a 3× 3 square average filter was applied
on the frame to find the two local maxima in the upper half
of the torso (one located on the right half and the other one
located on the left half). In addition, a threshold which was
defined empirically was introduced to ensure high accuracy
in determining the positioning of these two maxima. Since
the shoulder blades should roughly be located on the same
horizontal line, the positioning result was rejected when
the difference between two y-coordinates was larger than
a prescribed threshold (3 pixels). The example positioning
results are shown in Fig. 2b.

3) Signal extraction: Once the ROI were found, the two-
dimensional information was mapped to a one-dimensional
signal. All nonzero values in the shoulder blade regions
were summed up to obtain the raw signal. This signal was
then filtered using a fourth-order Butterworth filter with
a passband from 0.08 to 0.67 Hz (corresponding to 5-40
breaths per minute). The Butterworth filter was used to be
compliant with the legacy code [5]. In this particular case, the
use of the Butterworth filter is not critical, and comparable
results are achieved with other types of band-pass filters.

4) Respiration rate estimation: During the estimation of
RR, The DSST was also implemented on the filtered signal
since the problem of harmonics was again encountered. The
window length and the shift of DSST were the same as used
in the accelerometer signal estimation.
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C. RR estimation from the PSM based on torso-weighted
centroid (i.e. weighted-centroid method)

The second method for RR estimation was also based on
torso segmentation, therefore the first stage was the same
as that described in the previous section. Next, the signal
extraction was based on the observation that the vertical
movement of the weighted centroid varied according to the
inhalation and exhalation. During inhalation, the subject’s
weighted centroid moves downwards since the lower half
of the torso has a better contact with the PSM, while the
opposite is true during exhalation. The weighted centroid
of the torso was calculated in every frame, and the y-
coordinates were sequenced to construct the raw signal. The
RR estimation step was the same as the previous method,
using DSST to estimate RR while eliminating the influence
of harmonics.

D. HR estimation

For the HR estimation, after the torso segmentation, the
segmented image was divided into 3 × 3 square blocks.
The pixels in each block were summed to construct one-
dimensional signals of each 3 × 3 block for the whole
3-minute recording period. Only the signals for the blocks
whose percentage of nonzero value was greater than a thresh-
old percentage, defined experimentally, were considered
valid. Afterwards, each signal was filtered using a fourth-
order Butterworth filter with a passband from 0.67 to 2 Hz
(corresponding to 40-120 bpm). Then the STFT with a 20-
second window and 1-second shift was implemented on each
filtered signal. The reason why the STFT was implemented
instead of the DSST was that the filtered signals for HR
estimation were barely influenced by the HR harmonics. The
maximum frequency, which is the frequency of the highest
amplitude point in the frequency spectrum, and the SNR
value, which is used as a measure for the prominence of the
maximum peak relative to the other peaks, were determined.
The SNR was calculated as follows:

SNR =
max(peaks)∑

peaks
(1)

where peaks are the local maxima in the spectrum. An
example of the maximum frequencies and the corresponding
SNR value is shown in Fig. 3. Each circle represents an
estimation for a 3 × 3 block. The x-axis denotes the SNR
and the y-axis denotes the maximum frequency.

All valid blocks based frequency calculations were used
to generate the final frequency estimation. First, the SNR
of each block was mapped to a weight in the range from 0
to 1 using the softmax function. The softmax function is
presented below:

p(SNRj) =
exp(SNRj)∑n
i=1 exp(SNRi)

(2)

For the final estimation, a sliding window with a width
0.1 Hz moved through the frequency axis, and the weights of
the block estimations located in the window were summed
up. The frequency band with maximum total weight was

selected. The final HR was calculated from the weighted
average of the frequencies located in the selected frequency
band.

Fig. 3: An example of the maximum frequency and signal to
noise ratio (SNR) values calculated for each 3-by-3 block.

IV. RESULTS

The performance of the proposed algorithms was com-
pared to the values calculated from the accelerometer sig-
nal. Two 5-second long segments were discarded at the
beginning and the end respectively during the data analysis
to avoid the interference caused by posture adjustment.
TABLE I tabulates the mean for accelerometer estimations,
and the difference between the means of the proposed
methods estimations and accelerometer estimations. The
difference was computed as: PSM based estimation −
accelerometer based estimation.

TABLE I: Mean respiration rate (RR) and heart rate (HR)
derived from accelerometer (acc), and their differences with
means of the proposed methods. sb = shoulder blade, MD =
mean difference, SD = standard deviation.

RR difference (breaths/min) HR difference (bpm)
subject acc sb centroid acc block

1 16.5 -4.4 -2.6 66.5 -3.5
2 13.4 -0.1 -0.1 50.7 -0.1
3 14.2 -1.0 -0.4 76.2 -22.5
4 12.7 -0.2 +0.1 61.9 -1.7
5 15.1 +0.4 -0.2 48.0 +2.2
6 12.0 -0.4 +0.3 61.3 0.0
7 11.5 -0.5 -0.3 70.4 0.0
8 12.9 +2.0 -2.0 57.2 -1.6
9 18.2 -0.2 +0.2 61.5 -2.5
10 16.6 +0.1 -0.2 54.2 -0.7
11 21.5 -0.2 -0.8 75.4 -10.7
12 12.6 -0.8 -0.4 68.9 -0.3
13 14.1 +0.1 +0.2 61.7 +5.8
14 18.5 +0.2 +0.6 61.9 +4.9
15 13.7 -1.0 -1.3 69.5 -3.5

MD -0.4 -0.5 -2.3
SD 1.3 0.9 6.7

A. Estimation of respiration rate

The differences between the accelerometer estimation and
the estimations of proposed methods are below 1.5 breaths
per minute for 13 of the 15 participants. Furthermore, the
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continuous estimation results of the two presented methods
show good agreement with the estimation from accelerome-
ter as shown in Fig. 4a. The mean difference of the shoulder
blade method is smaller than the weighted centroid method
while the maximum difference of the shoulder blade method
is bigger. These differences indicate that the estimations
based on the shoulder blades are slightly more accurate but
also more sensitive than the estimations based on weighted
centroid. The reason why the estimations are inaccurate in
some measurements may be due to the contact between the
torso and the PSM. Subject 1 with an inaccurate estimation
has a very high BMI (31.6). Since an overweight body has
a very strong contact with the PSM, both the pressure in
the shoulder blade regions and the torso shape vary less
during the breathing cycles compared to other participants.
Subject 8 with inaccurate estimation has a different abnormal
contact situation. During the whole measurement, the lower
part of the torso does not have good contact with the PSM.
Therefore, the amplitude of the weighted centroid vertical
movement was less than other participants and irregular.
Performing a linear regression on the estimations based the
on shoulder blades and the estimations from accelerometer
resulted in a RMSE of 1.32 with a R2 of 0.812. Performing
a linear regression on the estimations based on weighted
centroid and the accelerometer resulted in a RMSE of 0.873
with a R2 of 0.917. This shows a strong linear relationship
between the estimations of the accelerometer and the pro-
posed methods. Applying Wilcoxon rank-sum test between
the mean vector of accelerometer estimation and the mean
vector of the proposed methods’ estimations both resulted in
a failure to reject the null hypothesis at the 5% significance
level (with p− value = 0.53 and 0.56 respectively).

B. Estimation of heart rate

An example of the continuous HR estimation is shown
in Fig. 4b while the differences between the accelerometer
estimations and the estimations of proposed method across
all the participants are tabulated in TABLE I . The differences
for HR are below 6 bpm for 13 of the 15 participants,
showing a good performance in most cases. However, it
remains to be investigated why the accuracy of the proposed
method is poorer for some subjects.

Performing a linear regression on the estimations based
on blocks and the estimations from accelerometer resulted
in a RMSE of 5.55 with a R2 of 0.6. Applying Wilcoxon
rank-sum test between the mean vector of accelerometer
estimation and the mean vector of the proposed method’s
estimations resulted in a failure to reject the null hypothesis
at the 5% significance level (with p− value = 0.38).

V. DISCUSSION AND CONCLUSION

In this paper, we proposed novel methods to estimate the
RR and the HR continuously using a PSM made by Tekscan.
The results show that the performance of these methods is
comparable to accelerometer based estimations. However,
the performance of these methods still needs to be further
investigated for more measurements with different RR, HR

values and more subjects. One limitation of the study is
that due to lack of reference RR and HR measurements,
we used accelerometer signals, which have been known to
provide very reliable results, to compute reference values. It
is necessary to repeat and further validate these experiments
against true RR and HR references measured using dedicated
sensors. Another limitation of the study is that the current
data set is rather small. Future investigations will focus on
the evaluation of subjects with varying BMI values, which
was found to influence RR calculations, and subjects with
higher resting HR values, which was observed to influence
HR estimations. In addition, future work is needed to adapt
the proposed methods in case people are non-static (i.e., data
with motion artifacts) and having different lying postures
(e.g. prone, or on the side).

Fig. 4: Examples of RR and HR estimations from subject 7.
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