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Abstract— TRUS-MR fusion guided biopsy highly depends on 

the quality of alignment between pre-operative Magnetic 

Resonance (MR) image and live trans-rectal ultrasound (TRUS) 

image during biopsy. Lot of factors influence the alignment of 

prostate during the biopsy like rigid motion due to patient 

movement and deformation of the prostate due to probe 

pressure. For MR-TRUS alignment during live procedure, the 

efficiency of the algorithm and accuracy plays an important role. 

In this paper, we have designed a comprehensive framework for 

fusion based biopsy using an end-to-end deep learning network 

for performing both rigid and deformation correction. Both 

rigid and deformation correction in one single network helps in 

reducing the computation time required for live TRUS-MR 

alignment. We have used 6500 images from 34 subjects for 

conducting this study. Our proposed registration pipeline 

provides Target Registration Error (TRE) of 2.51 mm after rigid 

and deformation correction on unseen patient dataset. In 

addition, with a total computation time of 70ms, we are able to 

achieve a rendering rate of 14 frames per second (FPS) that 

makes our network well suited for live procedures.  

 
Clinical Relevance— It is shown in the literature that 

systematic biopsy is the standard method for biopsy sampling in 

prostate that has high false negative rates. TRUS-MR fusion 

guided biopsy reduces the false negative rate of the sampling in 

prostate biopsy. Therefore, a live TRUS-MR fusion framework 

is helpful for prostate biopsy clinical procedures. 

I. INTRODUCTION 

Prostate cancer is the most common form of cancer among 
global male population [1]. The standard diagnostic procedure 
for detecting and grading of prostate cancer involve ultrasound 
guided biopsy. The biopsy samples are taken systematically by 
dividing the prostate into equal segments and taking tissue 
samples close to uniform sampling across the prostate volume. 
The main drawback of the systematic biopsy is the high false-
negative rate. Localization of the region of interest for biopsy 
is useful in reducing the false-negative rate of biopsy 
sampling, thereby eliminating the chances of repeated biopsy. 

To reduce the false-negative rate of the systematic biopsy, 
fusion biopsy is becoming very popular now a days [2]. In 
fusion biopsy, pre-operative MR study is performed on the 
subject and potential lesion regions which are primarily the 
region of interest (ROI) are marked on the MR images. During 
the clinical procedure for the fusion biopsy, the ROI from pre-
operative MR t2w scan is mapped on the intra-operative 
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ultrasound images to guide the clinician for potential areas of 
biopsy. To map the pre-operative MR scan onto the live 
ultrasound during the procedure, a base level rigid transform 
is computed between TRUS and MR using the 
electromagnetic (EM) tracker present on the system. This 
initial registration is bound to change over time due to various 
factors like patient motion and deformation of the prostate due 
to the probe pressure. Due to this motion, the alignment 
between MR and TRUS has to be updated during the biopsy. 

To overcome misalignment, live correction is needed, 
which include rigid motion and deformation compensation. 
Tharindu De Silva et. al.[3] describes a 2D/3D TRUS image 
based registration using normalize cross correlation metric and 
powel optimizer for rigid correction. They achieve an accuracy 
of 3.18 ± 1.6 mm on clinical data, simulated with various probe 
deformations, with run-time of 1.1s. Sheng Xu et. al.[4] 
describes an approach to perform real-time 2D/3D TRUS 
image-to-image registration using intermediate 2.5D to 3D 
TRUS with accuracy of 2.4 ± 1.2 mm on phantom data. Shihui 
Zhang et. al.[5] describes a technique to perform a 2D/3D 
image-to-image multi-modal registration, without requiring a 
3D TRUS by directly registering 2D TRUS with 3D MR using 
mutual information metric on feature image (gradient). This 
technique achieve an accuracy of 2.52 ± 0.46 mm on clinical 
data but is not real-time (~35 seconds) and does not support 
deformation correction. In one of our previous works, we have 
proposed a workflow for fast rigid (~120ms) and deformation 
(+40ms) compensation [6]. Even at 8 FPS using frame-
interleaving implementation, it does not fulfill the need of live 
motion correction for the doctor to see registered MR and 
TRUS images during live biopsy. In this work, we have 
designed a novel comprehensive framework for fusion based 
biopsy using an end-to-end deep learning network for 
performing both rigid and deformation correction with 
minimal latency (70ms / 14 FPS ). 

II. METHODOLOGY 

In this section, we present a registration framework to 
estimate rigid translation transform for TRUS and MR 

(𝑇𝑈𝑆
𝑐𝑡 , 𝑇𝑀𝑅

𝑐𝑡 ) , rotation (𝑅𝑜𝑡𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and deformation 

(D
MR

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) displacement fields for multi-modal registration of 2D 

TRUS and 3D MR. We have used our proposed network for 
live registration using feature based matching. Fig. 1 presents 
end-to-end architecture of proposed deep learning (DL) based 
registration pipeline, which includes feature generation (a), 
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translation correction  (b) and rotation and deformation 
correction (c). 

A. Feature generation 

   Feature based image-to-image registration is proven to be 
robust for multi-modal image registration [7]. In this work, we 
have used signed Euclidean distance map obtained from 
segmentation mask of prostate as feature map. For pre-
operative 3D MR volume, we trained a 3D U-Net based 
segmentation network using segmentation mask of prostate 
marked by an expert radiologist as ground truth. The precision 
and correctness of 3D MR segmentation masks obtained as 
network’s output is of utmost importance, as it will directly 
affect the quality of registration. We have used Signed Maurer 

algorithm in ITK to obtain the 3D MR feature map (F
MR

3𝐷
). 

Then EM transform is used to re-slice FMR
3𝐷  to obtain a 2D MR 

feature map (F
MR

2𝐷
) in TRUS space.   

For intra-operative 2D TRUS image, we have modified our 
encoder-decoder network proposed in [6] to compute the 

segmentation of prostate and 2D TRUS feature map (F
US

2𝐷
) 

simultaneously as shown in Fig. 1(a). The network is trained 
in a supervised manner using TRUS segmentation masks 
marked by clinician and feature maps obtained using Signed 
Maurer algorithm in ITK as ground truth. DL regression of the 
distance map reduces the feature computation time compared 
to [6] and is essential for live TRUS-MR feature based 
registration. For training the feature generator network, the 
losses used are binary cross entropy on segmentation 
predictions and mean squared error (MSE) on distance map 
predictions with equal weightage. 

B. TRUS-MR Translation Correction 

In order to compensate for translation, we translate the MR 
and trans-rectal ultrasound (TRUS) feature maps such that the 
centroid of prostate aligns with the image center. For 
computing the translation vector (𝑇𝑈𝑆

𝑐𝑡 ) for TRUS feature map 
and (𝑇𝑀𝑅

𝑐𝑡 ) for MR feature map we first compute the centroid 
of prostate using segmentation mask and then find its offset 
with image center. Center translated 2D MR feature map 
(𝐹𝑀𝑅

𝑐𝑡 ) is obtained in prior on CPU and is used as input for 
component (Fig. 1(c)) of the proposed network. TRUS feature 
map is center translated in the network as shown in Fig. 1(b) 

to obtain center translated TRUS feature map (𝐹𝑈𝑆
𝑐𝑡 ) using a 

Spatial Transformer Network (STN) [8]. 

C. Rotation and Deformation Fields Regression 

   We have designed a two-encoder one-decoder network for 

obtaining rotation (RotMR
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and deformation (D

MR
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 

displacement field vectors. The network architecture is shown 

in Fig. 1(c). It takes center translated MR feature map (𝐹𝑀𝑅
𝑐𝑡 ) 

and center translated TRUS feature map (𝐹𝑈𝑆
𝑐𝑡 ) as inputs to 

generate (𝑅𝑜𝑡𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  and (𝐷𝑀𝑅

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) as outputs. 
  

  In order to increase the efficacy of training and faster 

convergence, the training network includes two STN layers for 

loss computation as shown in Fig. 1(c). STN1 takes as input 

rotation displacement field (𝑅𝑜𝑡𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  as produced by decoder 

and MR feature map (𝐹𝑀𝑅
𝑐𝑡 ) to produce rigid corrected MR 

feature map (𝐹𝑀𝑅
𝑐𝑡+𝑟𝑜𝑡). STN2 takes as input deformation 

displacement field (𝐷𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and STN1’s output (𝐹𝑀𝑅

𝑐𝑡+𝑟𝑜𝑡) to 

produce rigid and deformation corrected MR feature 

map (𝐹𝑀𝑅
𝑐𝑡+𝑟𝑜𝑡+𝑑𝑒𝑓𝑜𝑟𝑚

). For training the rotation and 

deformation regression network, the losses used are defined as 

follows: 

1. Rotation Displacement Field Regression Loss 

We have defined a custom loss which is a weighted 

combination of two losses as given in (1). First component is 

the supervised MSE loss on rotation displacement field vector. 

Second component is L2 norm of gradients of displacement 

field vector as shown in (2) that is added as a regularizer to 

avoid large and arbitrary displacements.  

 

              Loss=1*MSE+5*L2                           (1) 

            L2=(
∂(RotMR⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

∂x
)
2

+(
∂(RotMR⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

∂y
)
2

                 (2) 

 

2. Deformation Displacement Field Regression Loss 

We have defined a custom loss which is a weighted 

combination of two losses as given in (3). First component is 

L2 norm of gradients of displacement field as given in (4). 

Second is the bending energy loss as given in (5) to ensure 

smoothness of deformation displacement field. 

Figure 1. Complete registration pipeline (a) Feature Generation (b) Translation Correction (c) Rotation and Deformation Correction 
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   𝐿𝑜𝑠𝑠 = 5 ∗ 𝐿2 + 5 ∗ 𝐵𝐸                                           (3)        

   𝐿2 = (
𝜕(𝐷𝑀𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝜕𝑥
)
2

+ (
𝜕(𝐷𝑀𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝜕𝑦
)
2

                                    (4) 

          𝐵𝐸 = (
𝜕(𝐷𝑀𝑅

𝑥 )

𝜕𝑦
) + (

𝜕(𝐷𝑀𝑅
𝑦

)

𝜕𝑥
)                                       (5) 

 
3. STN1 and STN2 loss 

MSE loss is computed between the STN1’s output i.e. 

rotation corrected MR Feature map (𝐹𝑀𝑅
𝑐𝑡+𝑟𝑜𝑡) and its ground 

truth obtained by iterative ITK registration algorithm. For 

STN2, we compute the MSE loss between STN2’s output i.e. 

(rigid + deformation) corrected MR feature map 

(𝐹𝑀𝑅
𝑐𝑡+𝑟𝑜𝑡+𝑑𝑒𝑓𝑜𝑟𝑚

) and center translated TRUS Feature 

map(𝐹𝑈𝑆
𝑐𝑡 ). As deformation displacement field regression is 

unsupervised, STN2’s loss plays a vital role in ensuring proper 

deformations.   
 

III. EXPERIMENTAL SETUP 

A.  Dataset and Preprocessing 

  Experiments were conducted on a dataset collected from 

34 patient biopsies [6]. The data was collected in collaboration 

with Narayana Healthcare in accordance with the guidelines 

established by their Institutional Review Board (IRB). During 

pre-operative image acquisition process, t2w 3D MR volumes 

were acquired from multi-vendor (GE, Philips) systems with 

varying imaging parameters (like in-plane resolution - 0.351 

mm to 0.664 mm, slice thickness - 0.700 mm to 7.000 mm). 

During intraoperative image acquisition process, 2D TRUS 

image (size: 640 x 704, spacing: 0.162 mm isotropic) and 

corresponding baseline alignment (EM transform) at 10 

samples per second were recorded for entire duration of 

biopsy. For training the proposed registration pipeline, 4400 

TRUS images from 23 patient biopsy data were used. Test set 

comprises of 2100 TRUS images from remaining 11 patients 

with annotations for TRE. The dataset is resampled to 128x128 

dimension before passing into the network. 

TABLE I.  HYPER-PARAMETERS 

Hyper-parameters Values 

Weights initialization Xavier  

Learning rate 1×10-4 

No. of epochs 6500 

Optimizer Adam  

Batch size 128 

Activation Function 

ReLU      (hidden layers) 

Sigmoid (TRUS segmentation out) 

Linear (TRUS feature out) 

Linear (Rotation field out) 

Linear (Deformation field out) 

Dropout 0.5 

 

In order to increase the robustness of network and imitate 

high rotation angles between TRUS and MR during practical 

scenarios, we augmented rigid aligned MR (obtained via [6]) 

distance map by randomly rotating in range of -30 to +30 

degrees. 

B. Implementation Details 

 The network experiments were performed using tensorflow 

framework. Initially, TRUS feature generation network and 

rotation + deformation regression networks were trained 

separately for 3000 epochs. Then both of these networks were 

integrated and trained further until convergence. The hyper-

parameters used during training of integrated pipeline are 

shown in Table 1. 

During inference, the network pipeline takes live TRUS 

image and center translated MR feature map as input, and 

produces 𝑇𝑈𝑆
𝑐𝑡  and composed (rotation + deformation) 

displacement field as output. The composed displacement 

field (𝐶𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗  ⃗) is computed by transforming (𝑅𝑜𝑡𝑀𝑅

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) using 

(𝐷𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and adding (𝐷𝑀𝑅

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) as per (6).  

 

            (𝐶𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  (𝐷𝑀𝑅

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) [(𝑅𝑜𝑡𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )] +  (𝐷𝑀𝑅

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )              (6) 

 

Fig. 2 shows(𝑅𝑜𝑡𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ), (𝐷𝑀𝑅

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and (𝐶𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗  ⃗) respectively. The 3D 

MR volume is resliced using EM transform to obtain 2D MR 

image (𝐼𝑀𝑅
2𝐷 ). 𝐼𝑀𝑅

2𝐷  is then center translated using prior 

computed 𝑇𝑀𝑅
𝑐𝑡  and rotation + deformation corrected using 

𝐶𝑀𝑅
⃗⃗ ⃗⃗ ⃗⃗  ⃗ to obtain 𝐼𝑀𝑅

𝑐𝑡+𝑟𝑜𝑡+𝑑𝑒𝑓𝑜𝑟𝑚
. Then 𝐼𝑀𝑅

𝑐𝑡+𝑟𝑜𝑡+𝑑𝑒𝑓𝑜𝑟𝑚
 is 

translated back using inverse of 𝑇𝑈𝑆
𝑐𝑡 . In this way, TRUS-MR 

image registration is performed for each live TRUS image. 

With the proposed framework, we were able to achieve rigid 

and deformation registration of TRUS and MR in 70ms on 

Intel i7 2.6 GHz CPU and NVIDIA GeForce 920MX 2 GB 

GPU.  

IV. RESULTS 

For evaluating and quantifying the performance of 
proposed registration framework, we measured Dice score and 
Target Registration Error (TRE) metrics. Dice score is 
computed as per (7) between TRUS prostate segmentations 
(X) with corresponding MR prostate segmentations (Y). Dice 
score before applying the correction is compared with Dice 
post rigid and deformation correction. TRE is computed in 3D 
MR space as in (7), where PMR is anatomical landmark on 

original 3D MR and PMR̃ is corresponding point mapped from 
live TRUS (PUS) onto 3D MR. A total of 110 anatomical 
landmark pairs were marked by expert radiologist in 2D TRUS 
images and 3D MR from 11 patient’s data. These landmark 
pairs were marked in visible locations such as the corpora 
amylacea, urethra, cysts, ejaculatory ducts, Benign Prostatic 
Hyperplasia (BPH) nodules, calcifications regions on both 
TRUS and MR. TRE values are compared before and after 
rigid and deformation correction. 

Figure 2. (a) Rotation Displacement Field (b) Deformation Displacement 

Field (c) Composed Displacement Field 

(a) (b) (c) 
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Dice = 2*
|X ∩ Y|

|X|+|Y|
 , TRE = ‖PMR-PMR̃‖                            (7) 

The comparison of Dice score prior and post correction 
are shown in Table 2. Compared to unregistered TRUS-MR 
prostate Dice, rigid registration gave a significant 
improvement in Dice score from 0.73 to 0.85. Applying 
composed (rigid and deformation) displacement field on 
unregistered MR further improved the Dice to 0.93. To 
evaluate the robustness of our network towards high degree 
of rotations, we have artificially rotated MR in range (-30 to 
+30) degree and compared the Dice score between MR and 
TRUS post rigid and deformation correction. 

TABLE II.  DICE COMPARISON 

 

The examples of rigid and deformation correction as 
applied on patient data using our network are shown in Fig. 3. 
Red contour represents the prostate boundary of uncorrected 
MR and green contour represents the prostate boundary of MR 
after rigid + deformation correction. Observe how corrected 
contour (green) matches the outline of prostate on TRUS 
compare to uncorrected (red). The comparison of TRE scores 
and run-time of other approaches is presented in Table III. 

TABLE III.  TRE COMPARISON WITH OTHER APPROACHES 

Method 
Clinical/ 
Phantom 

Baseline 
TRE 
(mm) 

Rigid 

TRE 
(mm) 

Rigid + 
Deformation 
TRE (mm) 

Run-
Time 
(ms) 

Ours Clinical 
8.73 
±5.1 

2.79 
± 1.6 

2.51 
±1.2 

70 

Aditya 
et al. [6] 

Clinical 
8.89 
±5.106 

3.36 
±1.8 

2.98 
±1.51 

112 
(rigid) 

De Silva 
et al. [3] 

Clinical 
Simulated 

6.89 
±4.1 

3.18 
±1.6 

N/A 1100 

Shihui et 
al.[5] 

Phantom N/A 
2.4 
±1.2 

N/A 350 

Sheng 
xu et al. 
[4] 

Clinical N/A 
2.52 
±0.46 

N/A 3500 

V. CONCLUSION 

In this paper, we have proposed a deep learning based 

registration framework for both rigid and deformation error 

correction during live fusion biopsy. Conventional non DL 

based registration approaches are time consuming and not 

suitable for live applications. The inference time of our 

solution is 70 milliseconds for all steps combined (feature 

generation, rigid and deformation correction), giving it the 

capability to run at 14 FPS for live applications. Furthermore, 

our feature map based registration solution does not depend on 

the modalities used for fusion procedures. With real-time 

capability and high rigid and deformation correction accuracy, 

our solution can be used clinically for cognitive fusion 

biopsies. The present solution is limited to 2D registration and 

is not capable of compensating for out of plane motion.   In 

future, we would like to extend our proposed registration 

framework to perform 3D registration and compensate for out 

of plane motion as well. Our solution use case can also be 

extended for work on live needle tracking in prostate fusion 

biopsy [9]. 
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Unregistered Rigid Rigid + 
Deformation 

Rigid + 
Deformation 
(augmented) 

0.73 ± 0.142 0.85 ± 0.12 0.93 ± 0.18 0.91 ± 0.23 

Figure 3. Results of correction on two patient data (row). (a)(d) shows TRUS 
image overlaid with uncorrected MR prostate contour (red) and rigid + 

deformation corrected MR prostate contour (green). (b)(e) shows 

unregistered MR image with overlaid prostate contour. (c)(f) shows 

registered MR image with overlaid prostate contour. 

(a) (b) (c) 

(d) (e) (f) 
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