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Abstract— To provide a complete picture of a scene suf-
ficient to conduct a minimally invasive, image-guided renal
intervention, real-time laparoscopic video needs to be integrated
with underlying anatomy information typically available from
pre- or intra-operative images. Here we present a simple and
efficient hand-eye calibration method for an optically tracked
camera, which only requires the acquisition of several poses
of a Polaris stylus featuring 4 markers automatically localized
by both the camera and the optical tracker. We evaluate the
calibration using both the Polaris stylus, as well as a patient-
specific 3D printed kidney phantom in terms of the number of
poses acquired, as well as the depth of the imaged scene into the
field of view of the camera, by projecting the several landmarks
on the imaged object at known location in the 3D world onto
the camera image. The RMS projection error decreases with
increasing distance from the camera to the imaged object from
7 pixels at 15-18 mm, to under 2 pixels at 28-30 mm, which
corresponds to a 2 mm and 1 mm error, respectively, in 3D
space.

I. INTRODUCTION

To reduce trauma and improve patient outcome, minimally
invasive image-guided renal interventions rely on laparo-
scopic visualization of the surgical scene as a surrogate for
direct vision. However, laparoscopic video provides only
organ surface information, with no underlying anatomy.
Such information is usually available from pre-operative
images or anatomical models derived from computed tomog-
raphy (CT) or magnetic resonance imaging (MRI), or intra-
operative imaging modalities, such as ultrasound (US) or X-
ray imaging. This information can be used to further enhance
laparoscopic visualization during image-guided renal inter-
ventions. The pre-operative images or models derived from
these images can be directly overlaid onto the laparoscopic
images in a virtual reality (VR) or augmented reality (AR)
scene to provided additional information, such as subsurface
vasculature or internal surgical target location. However, to
generate a spatially correct VR or AR environment represen-
tative of the surgical scene, the pre-operative images, virtual
representations of tracked surgical instruments, and real-time,
intra-operative video images need to be correctly registered
to display the “real” and “virtual” surgical scene from the
same perspective.

External tracking systems (e.g. NDI Polaris Spectra optical
tracking system (OTS) and others) provide position and
orientation of tracked dynamic reference frames (DRFs).
A DRF can be rigidly attached to a camera and then
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tracked to determine its pose and position in space relative
to the tracker. The images from the camera can then be
overlaid with pre-procedural anatomical models to generate
an augmented reality view. However, the generation of such
overlays requires accurate calibration between the camera
optical axis and the DRF. This calibration is referred to as a
hand-eye calibration [1], which is not as straightforward to
perform in a surgical environment, due to sterile and time
constraints.

There have been several methods and techniques proposed
in the literature to perform the hand-eye calibration [2]–
[4] with the simplest method using a Procrustes analysis
of paired-points in the image and reference frames. Some
techniques to obtain the paired-points rely on using a tracked
checkerboard to provide the 3D coordinates of the corners,
which are also automatically identified in the camera image
[5], [6]. Another technique to obtain point pairs is rotating
a camera around a fixed point [2]. Once several poses
featuring a set of landmarks and corresponding coordinates
in 3D space and 2D image space are identified, the cal-
ibration transformation is solved for using some form of
the Perspective-n-Point (PnP) problem or other formulation
[7]. Morgan et al. used an optically tracked stylus with a
calibrated tool-tip to obtain the coordinates of the tool-tip
in 3D space and image space from several poses; these
homologous coordinates were then used to solve for the
camera calibration.

In this paper, we propose a hand-eye calibration method
for a renal access multi-modality imaging guidance platform
and assess its uncertainty. The proposed method build on
work described by Morgan et al. [8], but instead of using
the coordinates of the tip of the tracked stylus to determine
the calibration transformation, we rely directly on the built-in
reflective markers on a DRF. This approach eliminates any
uncertainty associated with a tool tip calibration or associated
with tracking a checkerboard pattern using an attached DRF.
We assess the calibration accuracy in terms of the 2D error
between the projected landmarks from the 3D world space
onto the 2D image space for both a Polaris stylus and a
3D printed patient-specific kidney phantom and additionally,
assess the 3D error between the corresponding landmarks.
Finally, we demonstrate the generation of both real video
views and virtual views for the surgical scene from the same
view perspective, along with a corresponding overlay.
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II. METHODOLOGY

A. Instrumentation and Apparatus

We used a Logitech C910 webcam as our imaging device;
the camera has a maximum resolution of 5 MP, but was
used at 1.3 MP for a faster frame rate. The camera was
instrumented with a DRF to be tracked with a NDI Polaris
Spectra OTS. To simulate a renal intervention scene, we
used a 3D printed patient-specific kidney phantom created
by segmenting an abdominal MRI and generating a virtual
model. The model was “instrumented” with 14 3-mm dia.
hemispherical divots used as registration fiducials or targets,
as well as an additional 10 landmarks that serve solely to
emulate targeting.

The OTS was positioned such that its optimal tracking
volume covered the working volume around the 3D printed
kidney phantom. The phantom, tracked stylus, and the
tracked camera were positioned such that the OTS could
unobstructively “see” each component, while allowing the
camera to “see’ the tracked stylus and phantom. In addition,
we also ensured the camera remained within the OTS field
of view while being manipulated to image the phantom from
various distances and viewing angles.

B. Hand-eye Camera Calibration Procedure

The transformation relationships between the respective
coordinate frames of the components of a IGI system aug-
mented with a tracked camera is shown in Fig. 1, where T b

a is
a 4x4 rotation and translation matrix that describes the trans-
formation from coordinate space a to b. The transformations

Fig. 1. Diagram representation for a fully calibrated system to project
points that enables the projection of landmarks from the 3D world onto
a 2D camera image. Each T represents a transformation matrix between
coordinate systems.

labeled in Fig. 1 as TTracker
DRF and TTracker

Tool , are given by the
OTS. TTool

T ip is found using a pivot calibration [9], which is
later used to register the 3D kidney phantom from the 3D
world to its virtual counterpart using the tracking system.
TCamera
DRF is the unknown hand-eye calibration transforma-

tion matrix, while K is the camera intrinsic matrix which
governs the perspective transformation of 3D camera space
coordinates into 2D image space coordinates.

Assuming a pinhole camera model, the hand-eye calibra-
tion can be formulated as,

XImage = KTCamera
World XWorld, (1)

where XImage and XWorld are the homogeneous 2D co-
ordinates in the image and 3D coordinates in world space,
respectively. TCamera

World is a generic transformation that maps
world points to 3D camera space and can be solved for using
PnP algorithms, which requires a set of n corresponding
landmarks in both the 3D world and 2D image.

To obtain a set of corresponding landmarks, while main-
taining a simple hand-eye calibration solution, we used the
retro-reflective markers on the tracked stylus and transformed
them into the coordinate system of the DRF attached to the
camera. This mapping was accomplished using Equation 2:

XDRF = (TTracker
DRF )−1TTracker

Stylus XStylus, (2)

where XStylus and XDRF represent the coordinates of the
stylus markers in the 3D stylus coordinate system and the 3D
DRF coordinate system attached to the camera, respectively.
The coordinates of the stylus markers in image space were
obtained by capturing an image of the stylus and manually
identifying the center of the visible marker in the image,
which served as the ground truth for our subsequent error
analysis. The images were captured simultaneously with the
3D coordinates captured by the tracker. Each image, or
pose, provides a set of 4 corresponding landmarks, one for
each marker. We captured a total of 18 poses across the
image viewing plane to use for calibration. The camera was
calibrated using Zhang’s [10] method as implemented in
OpenCV to solve for the intrinsic camera parameters, K.

These point-pairs, which consist of the 3D coordinates of
the stylus markers transformed into the camera DRF space
and their 2D coordinates in image space, allowed us to
rewrite Equation 1 as follows:

XImage = KTCamera
DRF XDRF , (3)

which we then solve for the calibration matrix, TCamera
DRF ,

using OpenCV SolvePNP. We also computed the calibration
using an implementation of the algorithm described in [7]
as a comparison to the OpenCV algorithm. The method
proposed a solution to determine the registration between
homologous points and lines using an Iterative Closest Point
model, which minimizes the distance between 3D points and
lines.

Once the calibration matrix is determined, a known point
in the OTS space can be projected onto the image plane by

XImage = KTCamera
DRF (TTracker

DRF )−1XTracker, (4)

where XTracker represents the point’s coordinates in 3D
OTS space and XImage represents a point’s homogeneous
coordinate in 2D image space. Fig. 2 shows an example of
the stylus with the coordinates of the markers in 3D space
projected onto the camera image.
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Fig. 2. Image showing a pose of the stylus featuring 4 markers (left panel)
and their corresponding 3D coordinates projected onto the camera image
(right panel), indicated by the arrows.

C. Calibration Validation with Stylus

Following hand-eye calibration, we collected an indepen-
dent test set consisting of 39 poses to assess calibration
uncertainty and analyze the errors. We positioned the sty-
lus at multiple locations on a plane parallel to the image
plane, and repeated the measurements at increasing distances.
The stylus markers were transformed from their 3D world
coordinate system into the 2D camera image coordinate
system using Eq. 4. The calibration error was estimated
in image space as the pixel distance between the manually
identified and projected marker locations. We also calculated
the calibration error in 3D space in terms of the distance
between the 3D world coordinates of a point transformed into
camera space and a line that connects the origin (i.e., camera)
and the point in image space, which would ideally intersect
the marker in 3D space. As such, if the hand-eye calibration
is correct, and in the absence of noise, the distance between
the 3D marker and this line should be zero. The distance is
calculated using Equation 5:

d =
| (q − p)× (p− r) |

|q − p|
, (5)

where p is the camera origin, q is the point on the image
plane, and r is the point in 3D space. The methods to assess
2D pixel error in image space and 3D mm error in 3D space
are schematically illustrated in Fig. 3

Fig. 3. The location of ground truth, image, and world points relative to
the image plane and the associated error for the 2D and 3D cases. Points on
the image plane have (x, y) coordinates with units in pixels or mm, while
the world point has (x, y, z) coordinates with units in mm.

D. Calibration Validation with Phantom

To assess the calibration error in the context of the desired
image-guided renal navigation procedure, we conducted a
validation study using the 3D printed patient-specific kidney
phantom. We registered the physical kidney phantom to its

corresponding virtual model by using a set of six (6) paired-
point landmarks sampled with the optically tracked stylus.
To ensure a sufficiently accurate registration, we used the
fiducial configuration that yielded the best registration, as
reported in our previous work [11], characterized by a RMS
FRE on the order of 0.57-mm.

Following registration, we acquired several poses of the
kidney phantom and its associated fiducial markers from
two viewing angles, with the camera located at two dif-
ferent distances from the kidney: proximal (180 mm) and
distal (290 mm). Similar to the stylus-based validation, we
recorded the 3D landmarks projected onto the camera image
of the phantom, along with the landmark locations manually
identified in the camera image.

We collected another data set using a 3D kidney phantom
by placing the camera at two distances and recording the
locations of landmarks in 3D world space and 2D image
space three times for each of the two camera perspectives:
anterior and posterior. This experimental protocol yielded a
total of 12 poses, each featuring 10 recorded landmarks.

Fig. 4. Video view of the 3D printed kidney phantom showing a set of
phantom landmarks projected from 3D world space onto the 2D camera
image (left panel) and a close-up view of projected landmarks (circles) and
actual landmarks (indicated by arrows in the right panel)

Fig. 4 shows a view of the 3D printed kidney phantom
along with a set of 3D landmarks projected onto the camera
image. The points on the phantom are projected by first
registering the phantom to the OTS and then using this world
registration transformation along with the other transforma-
tions to map 3D world coordinates to 2D camera image
coordinates, as described by Equation 6:

XImage = KTCamera
DRF (TTracker

DRF )−1TTracker
PhantomXPhantom,

(6)
where XPhantom represents the 3D coordinates of the land-
marks on the phantom and XImage represents homogeneous
coordinates of landmarks in the image plane.

E. Augmented Reality Overlay

With a fully calibrated system, we can use Equation 6
to overlay the virtual model onto the camera image. We
used 3D Slicer [12] along with the IGT Extension [13] and
PLUS [14] to capture a view of the virtual model from
the same perspective as the real camera view, and either
show these two views side by side or as a virtual on real
view overlay. This allows the user to visually check the
registration between the models and then use the overlay
image to improve navigation. As a verification step of the
correctness of the image overlay, we recorded the 2D image
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space coordinates of the stylus markers in 10 images using
manual identification, as well as the projection of the 3D
coordinates of the markers onto the image using Eq. 4 and
the virtual camera in 3D Slicer. We then calculated the
RMS error between each projected set of coordinates and
the manually identified locations.

III. RESULTS

A. Calibration Transformation Assessment

We first studied the error associated with the calibration
transformation matrix and its convergence following the
acquisition of several poses.

One way to visualize the stability of the calibration and
verify that the calibration transformation is not changing
is to examine the sum of the squared difference between
the calculated transformation matrices as more features are
added. Fig 5 indicates a large difference at first, when using
only two calibration poses; the sum of the squared difference
then drops sigficantly with the use of 4 or more calibration
poses.

Fig. 5. Sum-squared difference between calculated TCamera
DRF transfor-

mation as a function of increasing number of poses used to determine the
transformation. This shows the estimated transforms converge rapidly to a
stable value.

In addition to assessing the convergence of the estimated
calibration transformation, we also assessed the effect of the
number of poses used to compute the calibration transfor-
mation in terms of the RMS distance error between the 3D
projected landmarks onto the image space and the image
space landmarks. We randomly selected n poses to calculate
the calibration transformation and evaluated the fit of the
calibration using the same pose, then repeated this five times
for each n. Fig. 6 indicates that using at least three poses
to perform the calibration, the error associated with the
projection of the 3D space also stabilizes. These observations
confirm previous studies [2], [7], [8], which indicated that
twelve feature points are sufficient to generate a stable and
sufficiently accurate calibration transformation.

Fig 6 also shows that as the number of poses used to com-
pute the transformation increases, the RMS error converges
to approximately 2 pixels. This error consists of both the
calibration error , as well as the uncertainty associated with
the user selection of the landmarks in the camera image.
This user selection uncertainty in localizing the markers in

Fig. 6. Calibration error as a function of number of poses. The calibration
was calculated using n random poses which was repeated five times for
each n. As n increases, the error converges to 2 pixels.

the camera image was measured and showed a 1.2 pixel
variability.

We also compared the calibration transform obtained using
OpenCV to the calibration transform calculated using the
method described by Chen et al. [7]. The sum-squared
difference between our reconstructed calibration transforma-
tion matrices and those calculated using method of Chen
et al.was 0.07, indicating that both methods yield similar
transformations.

B. Stylus Calibration Validation

To ensure the hand-eye calibration was accurate, we
computed the error associated with the projection of 3D
landmarks from an independent set of poses (i.e., not used to
determine the hand-eye calibration) onto the camera image.
In 2D image space, the RMS error is the distance (in pixels)

Fig. 7. Projection error in 2D space (pixels) for poses collected at varying
distances. The RMS error for each pose is marked using a ‘dot’, while the
RMS error computed across all points from all poses collected at a single
distance from the camera is marked with an ‘x’. The distance is measured
using the average z distance from camera origin to the 3D world coordinates
of the pose.

between the manually identified landmarks and the projected
3D landmarks in each pose and computed across all the the
points collected a specific distance from the camera. Fig. 7
illustrates the the RMS error (in pixels), which decreases
with increasing distance between the camera and imaged
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object. The plot shows the RMS error associated with each
pose (dot), as well as the RMS error for all the points
collected at a given distance (x). The error was plotted as a
function of distance from the camera, which was determined
using the average z coordinate value of the location in camera
space.

Fig. 8. Estimated RMS distance between “true” and projected points in
3D world space. The RMS error for each pose is marked using a ‘dot’,
while the RMS error computed across all points from all poses collected at
a single distance from the camera is marked with an ‘x’. The distance is
measured using the average z distance from camera origin to the 3D world
coordinates of the pose

While the 2D error is important, the projection error in
3D space is more important to the user, as it indicates the
uncertainty in the system in physical units. Fig. 8 shows the
error of points projected into 3D space, which quantifies the
uncertainty in terms of the physical distance between the
projected 3D landmarks and the same landmarks captured in
the camera image.

C. Phantom Calibration Validation

We conducted a similar analysis using the 3D patient-
specific kidney phantom as the object of interest We collected
points across the surface of the kidney phantom, while
positioned at a 170-185 mm range from the camera for the
proximal measurement and 270-300 mm range for the distal
measurement. Fig. 9 shows the RMS error associated with

Fig. 9. Estimated RMS distance between “true” and projected points in 3D
world space (mm). It shows the RMS error for each point on the anterior
and posterior side of the phantom with a ‘.’ and the overall error with a ‘x’.
Data points were collected at 170-185 mm for the proximal distance and
270-300 mm for the distal distance.

projecting 3D landmarks onto the 2D camera image of the
anterior and posterior views of the kidney. Note the slightly
higher error on the posterior view compared to the anterior
view, which may be, in part, due to the greater spread in
distance from the camera of target fiducials on the posterior
side of the phantom, as well as perhaps sub-optimal tracking
of the camera by the OTS when acquiring the posterior view
of the phantom.

D. Same Perspective Real and Virtual Views with Overlay

Fig. 10 shows a real and virtual view of the in vitro image-
guided renal intervention scene, from the same perspective,
along with an overlay showing the augmentation of the real
video view with the virtual view. Fig. 10 also shows the

Fig. 10. Real (A) and virtual (B) views of the in vitro image-guided renal
intervention scene from the same perspective as well the corresponding
overlay (C) showing the augmentation of the real video view with its virtual
counterpart as well as a close-up, detailed view of stylus marker locations
projected onto the image (D). The center of the marker is indicated with
a red dot, the 3D Slicer model projection is a green dot, and calibration
re-projection is a blue dot

locations of the stylus markers projected onto the camera
image of the stylus. The points indicate the center of the
markers identified from the camera image (red), the location
projected using a model in 3D Slicer (green) and overlaid to
create the augmented reality view, and also the location of
the marker projected using Eq. 4 (blue). We calculated the
RMS error between the 3D Slicer projected points and the
manually identified marker center as 1.0 pixels. Similarly, we
computed a 1.8 pixel RMS distance error between the points
projected using Eq. 4 and the manually identified marker
centers. Ideally, these three locations should coincide, but the
small error (on the order of 1-2 pixels) given the inherent
uncertainty, indicates the position of the 3D Slicer virtual
camera and the real camera are sufficiently identical.

IV. DISCUSSION

Our study suggests that the proposed and implemented
hand-eye calibration method stabilizes to an acceptable error
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on the order of two pixels upon the acquisition of only three
poses, well within the tolerance for the proposed application.
Our calibration results mirror those reported by Morgan et
al. [8] in that a minimum of three (3) poses, or 12 features,
are needed to perform a consistent and accurate hand-eye
calibration and error decreases as a function of increasing
distance.

While the 2D image projection error at the closest distance
was on the order of 7 pixels, when converted to 3D space,
it amounted to 2 mm. This error dropped to approximately
2 pixels, which corresponds to 1 mm in 3D space, when the
imaged object is further from the camera. The counterintu-
itive result of error decreasing with increasing distance away
from the camera is primarily a function of the angular size
of objects.

In the future, we intend to more fully analyze the uncer-
tainty associated with overlaying the virtual model on the
camera image. We will then use the system to investigate
the benefits of augmented reality for renal navigation and
the possibility of improving registration using information
from the camera image.

Since our method currently relies on manually selecting
the center of the stylus landmarks, it has limitations on the
workflow and uncertainty. The user uncertainty is relatively
small at approximately 1 pixel, but an automated method
would be more consistent. The time required to determine
the hand-eye calibration is less than 2 minutes to collect
the minimum number of poses to ensure a consistent trans-
formation. A future development would be to implement a
method to automatically determine the location of landmarks
in images, which would enable the rapid estimation of the
hand-eye calibration by tracking a tool within an operating
theater if needed. This approach eliminates the need for any
special tools or instruments needed to perform the hand-eye
calibration.

The proposed method can be used in an operating theater
that utilizes an optical tracking system (such as the NDI
Polaris Spectra or similar) for surgical instrument and pa-
tient localization in conjunction with an endoscopic guided
intervention. This method enables on-the-fly calibration of
the tracked video instrument and co-registration between the
patient, tracked surgical instruments, pre-procedural images,
and the intra-operative video. The co-registration enables the
augmentation of the real-time video of the patient with virtual
representations of surgical instruments and pre-procedural
images for enhanced visualization and navigation.

V. CONCLUSION

We presented a method to perform hand-eye calibration for
use with a renal intervention system. The proposed method
provides a method which could be used in an environment
such as an operating theater while avoiding the extra step
of registering a checkerboard to a DRF. We assessed the
2D and 3D error in projecting model landmarks to the
expected location in an image. The uncertainty was found to
be adequate for the proposed purpose of augmented reality

for renal navigation and provided similar accuracy to other
methods. Finally, we showed that the hand-eye calibration
can be used for our goal of creating a multi-modal image-
guidance platform by augmenting a real-time video view
with virtual information extracted from pre-operative images.
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