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Abstract— Attention can be measured by different types of
cognitive tasks, such as Stroop, Eriksen Flanker, and Psy-
chomotor Vigilance Task (PVT). Despite the differing content
of the three cognitive tasks, they all require the use of visual
attention. To learn the generalized representations from the
electroencephalogram (EEG) of different cognitive attention
tasks, extensive intra and inter-task attention classification
experiments were conducted on three types of attention task
data using SVM, EEGNet, and TSception. With cross-validation
in intra-task experiments, TSception has significantly higher
classification accuracies than other methods, achieving 82.48%,
88.22%, and 87.31% for Stroop, Flanker, and PVT tests
respectively. For inter-task experiments, deep learning methods
showed superior performance over SVM with most of the
accuracy drops not being significant. Our experiments indicate
that there is common knowledge that exists across cognitive at-
tention tasks, and deep learning methods can learn generalized
representations better.

I. INTRODUCTION

Brain-Computer Interface (BCI) systems were initially
used for communication and control in paralyzed patients,
but have seen use in the form of cognitive training and tests
to model and evaluate cognitive states of healthy people [1].
EEG BCI experiments generally consist of a few electrodes
placed on a subject’s head. This allows for lower cost, non-
invasive EEG experiments and has thus become an increas-
ingly preferred choice in passive BCI research domains and
attention-focused research [2] [3].

Attention is paramount in many daily tasks that require
attention and focus, such as studying, operating machinery,
etc. [4]. Attention training using EEG BCI systems has
been shown to improve ADHD symptoms [3]. It can be
broadly divided into four types: selective attention, sus-
tained attention, divided attention, and executive attention
[5]. Selective attention plays an important role in human
intelligence as it requires the ability to focus on desired in-
formation while avoiding distractions [4]. Sustained attention
is highly required during tasks like driving vehicles, mon-
itoring surveillance footage, or concentrating during study
sessions [6] [7]. Stroop [8], Flanker [9], and psychomotor
vigilance task (PVT) tests [10] are typically used to measure
the attention state of human beings. Stroop tasks measure
selective attention by instructing the subject to name the
color of words [8]. Flanker tasks measure selective attention
by instructing test subjects to respond to a target stimulus
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surrounded by non-target stimuli [11]. PVT measures the
response speed of certain visual stimuli [10]. Despite the
differing content of the three cognitive tasks, they all require
the use of visual attention.

Deep Learning methods have achieved superior accuracy
over Machine Learning models when applied to classification
tasks on EEG data [12] [13] [14]. Robinson et al. [15]
developed an EEG BCI system for hand-motor imagery
decoding with CNNs. Lawhern et al. [16] proposed EEG-
Net, capable of capturing spatial and temporal information
through convolutional kernels. Ding et al. [12] developed
TSception; a novel deep learning framework, achieving high
accuracy of 86.03% and outperforming previous methods for
emotion state classification.

In order to learn the generalized representations among
different mental tasks, we conduct both intra-task and inter-
task attention state classification experiments on the attention
dataset proposed in [5] which contains EEG data of Stroop,
Flanker, and psychomotor vigilance task (PVT) tasks. SVM,
EEGNet, and TSception are used in our experiments. Section
II describes the details of the dataset, experiment settings and
evaluation process. The results and analysis are provided in
section III. Finally the we discuss and conclude the paper in
section VI.

II. MATERIALS AND METHODS

A. Dataset and Pre-processing

The dataset used in this work was proposed in [5]. 10
healthy adults participated in the experiments. The EEG data
were recorded using a wearable EEG MUSE headband and
eye gazes were captured by a desktop eye tracker. Four EEG
electrodes (Tp9, AF7, AF8, Tp10) are used in the dataset.
Each subject is required to perform three types of mental
tasks, Stroop, Flanker, and PVT. There are two classes in
each type of mental tasks, attention and inattention trials.
For each attention trial, subjects are required to repeat the
desired mental task 10-13 times. For inattention trial, the
design is the same for 3 types of mental attention tasks,
which introduces the subject not to focus by slowly looking
around on the black screen. Each task contains three sessions.
In each session, there are three blocks which contains one
attention trial and one inattention trial. Each trial lasts for
30s. Hence, there are 18 trials (9 attention and 9 inattention)
in total for each mental attention task.

First, the data is band-passed using a zero-phase fifth-order
IIR band-pass filters of 0.3-45Hz to remove low and high-
frequency noise. Average filters are then applied to remove
artifacts as [5]. Each trial’s data is segmented using sliding

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 306



Stroop Test Flanker Test PVT Test

Apply Apply

Learning System

Fig. 1. Learning the common hidden knowledge from one task and apply the learned knowledge to other related tasks. Three mental attention tasks are
different in format but they all require visual attention during the task. We hold the hypothesis that the learning system can learn such common hidden
knowledge from each task which can be applied to other attention tasks. Learning from Stroop data is shown just for illustration. The study in this paper
is done for all inter-task scenarios.

windows of lengths 1s, 2s, and 4s with a moving step of
100ms. For SVM, features are further extracted. Differential
entropy features of four frequency bands are extracted as the
input of SVM as [12]. The SVM is used as the baseline, since
it is the most commonly used machine learning methods in
BCI [5]. For the deep learning methods, they can learn the
classification-related representations from EEG data via the
convolutional layers. Hence the EEG segments are fed into
the EEGNet and TSception directly.

B. Intra-task Attention Classification

For each subject (subject-specific experiment), intra-task
experiments are conducted to evaluate the classification
performance of SVM, EEGNet, and TSception on the bi-
nary classification (attention vs. inattention) of each type
of mental tasks. For each task’s data, leave one block out
cross-validation [5] is utilized to evaluate three methods.
Each time one block’s data are selected as testing data, the
remaining data are used as training data. Among the training
data, 20% are selected as validation data and the remaining
80% are used as training data. This process is repeated until
every block’s data are used as testing data once. The average
classification accuracy of leave one block out cross validation
is used as the classification performance on each subject. The
final mean classification accuracy of all subjects is reported
for each task. Let XTi ∈ Rc×l,YTi ∈ R, i ∈ [1, ..., n], be
the data and label of task T , where c is the number of EEG
channels, l is the length of each EEG segment, and n is the
total number of EEG segments. For deep learning methods,
the optimization problem of the intra-task experiment is
to find the classifier Φ(·) parameterized by Θ which can
minimize the below loss function as [12]:

LT =

n∑
i=1

LCE(YTi ,Φ(XTi ,Θ)) + λL1(Θ) (1)

where the LCE is the cross-entropy loss, L1 is the L1
regularization term, λ is the L1 regularization coefficient.

C. Inter-task Attention Classification

Stroop, Flanker, and PVT tests are different mental at-
tention tasks. Although they are different in experiment
designs, all of them require the subjects to have high
visual attention during the tasks. We hold the hypothesis
that deep learning methods can better learn this common
information as the generalized representations. Hence, the
inter-task experiments are conducted to evaluate the inter-
task classification performance of these three methods.

For each subject (subject-specific experiment), inter-task
experiments are conducted. During the experiment, one par-
ticular task is selected as the training task, the other two are
used as testing tasks. For the training task, two blocks are
used as validation data, the other seven blocks are used as
training data. During the training process, Eq. 1 is utilized to
guide the network training. Early stopping is adopted to save
the model which achieves the best accuracy on validation
data. The saved model will be evaluated on the testing tasks
separately. Given XTji ∈ Rc×l,YTji ∈ R, i ∈ [1, ..., n], j ∈
[1, 2, 3] as the data and label of task Tj . T ∈ [stp, flk, pvt],
where stp = Stroop test, flk = Flanker test, pvt = PVT. Let
ΦTj (·) denote the classifier trained on task Tj . For each
task, we separately apply the ΦTj (·) on task Tm, where
m ∈ [1, 2, 3],m 6= j, to calculate the cross-task accuracy.
This process is repeated until all the three tasks are used as
the training task once. The average classification accuracy of
all the subjects is reported for each inter-task experiment.

D. Implementation Details

For SVM, RBF kernel with C being 2 and γ being 0.5 is
used. For the deep learning methods, PyTorch library is used.
The experiment is run on an Ubuntu 18.04 machine with
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TABLE I
MEAN ACCURACY FOR INTRA-TASK ATTENTION CLASSIFICATION USING LEAVE ONE BLOCK OUT CROSS-VALIDATION

Segment length
Tasks Methods 1s 2s 4s

SVM 66.56%*** 69.31%*** 71.61%**
Stroop EEGNet 68.48%** 75.03%* 78.21%*

TSception 72.23% 77.99% 82.48%
SVM 74.53%* 76.38%* 76.39%**

Flanker EEGNet 71.57%** 77.10% 77.26%*
TSception 78.46% 83.05% 88.22%

SVM 73.86%* 76.32%** 78.09%**
PVT EEGNet 74.07% 80.67% 83.38%

TSception 77.43% 82.13% 87.31%

∗:p-value < 0.05; ∗∗:p-value < 0.01; ∗ ∗ ∗:p-value < 0.001.
The p-value is between TSception and other methods since TSception achieves the highest accuracy (bold font in the table data) in
all settings of all the tasks.

a Tesla V100 GPU. The hyper-parameters of EEGNet and
TSception are set to be the suggested ones in their original
paper. The batch size is set as 64, the Early Stopping patience
is set as 5, which means the training process will cease
once the accuracy on the validation set does not increase
for 5 epochs. L1 regularization is used as [12]. The L1
regularization coefficient is 1e-6. The maximum training
epoch is set as 100, while the dropout rate is set as 0.5. Adam
optimizer is adopted with the initial learning rate being 1e-3.

III. RESULTS AND ANALYSIS

A. Intra-task Experiment Results

The classification results of the three methods in intra-
task experiments are shown in TABLE I. Paired T-test is
utilized to do the statistical analysis of the results. TSception
achieves significantly higher accuracies than other methods
in all the experiments. EEGNet achieves second place in
most of the experiments except Flanker test in which SVM
is slightly higher than EEGNet when the segment lengths
is 1s. Generally, deep learning methods show superior clas-
sification ability to SVM. It is also obvious that the mean
accuracy of all three methods increases as the segment length
increases. Among the three tasks, the best classification
accuracies (achieved by TSception) in three types of segment
lengths are all higher than the other two models, being
78.46% for 1s, 83.05% for 2s, and 88.22% for 4s. However
the best classification results of all three segment lengths
in Stroop test experiments are relatively lower than others,
being 72.23% for 1s, 77.99% for 2s, and 82.48% for 4s
respectively. Besides, the overall performances of all three
methods for Stroop test experiments were lower than Flanker
test and PVT ones, indicating Flanker test and PVT have
better attention inducing ability.

B. Inter-task Experiments Results

Although the three cognitive tasks are different, visual
attention is required during all the tasks. We hold the
hypothesis that deep learning methods can learn the common
hidden knowledge to generalize better across tasks. The
inter-task experiment results are shown separately for three
different machine/deep learning methods first in TABLE II

- IV to compare the accuracy changes between training on
the task’s own data and training on other tasks’ data. Then
the accuracy comparisons among different methods for each
inter-task experiment are shown in Fig. 2. Paired T-test is
used for statistical analysis.

According to TABLE II, all the accuracies of inter-
experiments drop compared to the intra-task ones using
SVM. The accuracy drops of most inter-task experiments
are not statistically significant (p > 0.05), except when
training the SVM on Stroop data then testing on Flanker
(p = 0.006 for 1s; p = 0.019 for 2s; p = 0.085 for 4s) and
PVT (p = 0.006 for 1s; p = 0.001 for 2s; p < 0.001 for
4s). Training SVM on Flanker test data gives the minimum
overall drop with the maximum accuracies being 65.49%
(1s), 66.51% (2s) and 68.62% (4s) for testing on Stroop and
71.48% (1s), 73.30% (2s) and 72.63% (4s) for testing on
PVT. The overall trend remains that the longer the segment
length, the higher the accuracy.

TABLE III shows the cross tasks performance of EEG-
Net. In most of the experiments, the accuracy drops are not
significant (p > 0.05). The minimum drops are observed
when EEGNet is trained on PVT data and tested on Stroop
data. The accuracy decreased by 1.37% when segment length
is 1s (p = 0.642); for 2s segments it drops from 75.03%
to 72.06% (p = 0.317) and the smallest drop is 0.44%
(p = 0.914) for 4s segment setting. The accuracies even
increase when training on PVT task data and tested on
Flanker task data, especially when the segment length is 4s,
which has 9.5% improvement compared with the intra-task
results. The best overall performances of EEGNet are seen
in the experiments using PVT data as training data. Like the
SVM, the accuracy will increase as the data segment length
increases.

The accuracies of TSception for inter-task experiment are
shown in TABLE IV. Although the drops of accuracies using
TSception are relatively larger than SVM and EEGNet, most
of the accuracy drops are not significant. When the model
trained on PVT data is used to classify the Flanker test data,
smallest drops are observed in all three types of segments
with the drops being 1.68% for 1s (p = 0.390), 1.94%
for 2s (p = 0.253) and 3.12% for 4s (p = 0.144). The
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TABLE II
MEAN ACCURACY FOR INTER-TASK ATTENTION CLASSIFICATION USING SVM

Test on
Train on Stroop Flanker PVT
Stroop 66.56% 67.06% 66.66%
Flanker 65.49% 74.53% 71.48%
PVT 64.82% 71.41% 73.86%

Test on
Train on Stroop Flanker PVT
Stroop 69.31% 69.26% 68.54%
Flanker 66.51% 76.38% 73.30%
PVT 66.17% 72.66% 76.32%

Test on
Train on Stroop Flanker PVT
Stroop 71.61% 70.65% 69.96%
Flanker 68.62% 76.39% 72.63%
PVT 67.82% 72.13% 78.09%

(a) Segment length=1s (b) Segment length=2s (c) Segment length=4s

TABLE III
MEAN ACCURACY FOR INTER-TASK ATTENTION CLASSIFICATION USING EEGNET

Test on
Train on Stroop Flanker PVT
Stroop 68.48% 70.71% 67.64%
Flanker 66.17% 71.57% 70.38%
PVT 67.11% 71.80% 74.07%

Test on
Train on Stroop Flanker PVT
Stroop 75.03% 75.83% 73.31%
Flanker 71.61% 77.10% 74.98%
PVT 72.06% 78.18% 80.67%

Test on
Train on Stroop Flanker PVT
Stroop 78.21% 78.25% 74.68%
Flanker 74.48% 77.26% 76.60%
PVT 77.77% 86.76% 83.38%

(a) Segment length=1s (b) Segment length=2s (c) Segment length=4s

TABLE IV
MEAN ACCURACY FOR INTER-TASK ATTENTION CLASSIFICATION USING TSCEPTION

Test on
Train on Stroop Flanker PVT
Stroop 72.23% 73.64% 72.41%
Flanker 67.62% 78.46% 72.03%
PVT 68.87% 76.78% 77.43%

Test on
Train on Stroop Flanker PVT
Stroop 77.99% 78.84% 76.19%
Flanker 73.33% 83.05% 76.28%
PVT 74.38% 81.11% 82.13%

Test on
Train on Stroop Flanker PVT
Stroop 82.48% 83.15% 80.38%
Flanker 79.52% 88.22% 83.36%
PVT 79.47% 85.10% 87.31%

(a) Segment length=1s (b) Segment length=2s (c) Segment length=4s

same thing happens if the model is trained on Stroop data
and tested on PVT data with relative larger drops than the
ones using Flanker data as testing data. Training TSception
on PVT data gives the best overall performance with the
maximum accuracies being 68.87% (1s), 74.38% (2s) and
79.47% (4s) for testing on Stroop and 76.78% (1s), 81.11%
(2s) and 85.10% (4s) for testing on Flanker. The accuracies
are positively correlated to the segment lengths as well for
TSception.

The comparisons between different machine/deep learning
methods are shown in Fig. 2. TSception still achieves the best
classification in inter-task experiments, except when training
on PVT and testing on Flanker experiment with 4s segment
length. From the bar chart, both deep learning methods are
better than SVM, and the improvements increase with the
increment of segment lengths.

IV. DISCUSSION AND CONCLUSION

Attention can be measured by cognitive attention tasks.
Stroop task asks the subject to name the color of words to
measure the selective mental attention. Flanker task requires
subject to response to the certain stimulus only when the tar-
get stimulus is surrounded by non-target ones. PVT measures
the response speed to certain visual stimulus. Although the
three mental tasks are different in content, they all required
visual attention during the tasks. This visual attention can be
regarded as the common hidden knowledge among the three

tasks. We hold the hypothesis that deep learning methods
can learn this hidden knowledge and extract a much more
generalized representation for classification tasks across dif-
ferent mental attention tests. To evaluate our hypothesis,
both intra and inter-task attention classification experiments
were conducted using three modern machine/deep learning
methods.

In the intra-task experiment, the classification performance
of all three methods were evaluated. According to the results,
both deep learning methods achieved higher accuracies than
SVM, showing the better feature learning ability. Among the
two deep learning methods, TSception achieves significantly
higher accuracy than EEGNet. In the inter-task experiments,
a model was trained on one mental task’s data and evaluated
on other tasks. From Table IV (c), which lists down the
accuracy using 4s data and achieved the highest performance
among all 3 segment lengths, it can be observed that the
intra-task cases achieve the highest accuracy, but the inter-
task cases only suffer a small drop in accuracy. Therefore,
we hypothesize that there might be common features in
EEG which may represent the manifestation of the common
attention/inattention process in the brain. Besides, both deep
learning methods achieve higher classification accuracies
than SVM in inter-tasks experiments, indicating deep learn-
ing methods have better learning ability for the common
hidden knowledge across different cognitive attention tasks.
For both EEGNet and TSception, the best overall results were
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Fig. 2. Performance comparison between SVM, EEGNet and TSception in inter-task experiments.

observed when they were trained on PVT task data while the
worst ones are in the experiments where Stroop data were
used as training data, indicating less common knowledge
between Stroop and other two tasks. In the future, efforts
will be given to design new training strategies to better learn
the common hidden knowledge among different cognitive
attention tests.
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