
  

  

Abstract— The aim of this work is to present an automated 

method, working in real time, for human activity recognition 

based on acceleration and first-person camera data.  A Long-

Short-Term-Memory (LSTM) model has been built for 

recognizing locomotive activities (i.e. walking, sitting, standing, 

going upstairs, going downstairs) from acceleration data, while 

a ResNet model is employed for the recognition of stationary 

activities (i.e. eating, reading, writing, watching TV working on 

PC).  The outcomes of the two models are fused in order for the 

final decision, regarding the performed activity, to be made.  For 

the training, testing and evaluation of the proposed models, a 

publicly available dataset and an “in-house” dataset are utilized.  

The overall accuracy of the proposed algorithmic pipeline 

reaches 87.8%. 

I. INTRODUCTION 

Human activity recognition has gained the interest of 
researchers due to its frequent use in applications related to 
surveillance, home health monitoring, human-computer 
interaction etc.. Activities of daily living (ADLs) and 
instrumental activities of daily living (IADLs) are the two 
main groups of human activities [1].  The complexity and 
variety of daily activities lead the researchers to explore 
different sources of data for activity recognition.  Acceleration 
and visual observations are the most common source of 
information used for activity recognition [1, 2]. 

Wearable accelerometers are often used, either alone or in 
combination with additional sensors such as gyroscopes, to 
classify ADLs and recognize fall events [2].  Although they 
present high performance in classifying activities with high 
motion magnitude, their performance is not acceptable in the 
recognition of activities with low motion magnitude due to the 
similarity presented in acceleration signals [2-6].  

Visual information is exploited in order for the 
abovementioned “weakness” to be overcome.  In this case a 
sequence of images depicting the human body is processed in 
order for the body posture and/or motion information to be 
extracted.  Furthermore, data provided by first-person cameras 
have been exploited recently [7-9].  The processing of video 
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frames, through object-oriented methods, leads to the 
recognition of stationary activities strongly related to the 
detected objects [10-14].  Finally, the analysis of motion flow 
information allows the identification of activities based on 
optical flow features [2, 8]. 

The complementarity of the abovementioned approaches 
has been examined by Zhan et al. [2], Possas et al. [7] and 
Song et al. [8, 9].  Zhan et al. [2] introduced an automatic 
activity recognition system, integrating both accelerometers 
and a first-person view camera in three steps: (i) video and 
acceleration feature extraction, (ii) classification, and (iii) 
structure prediction.  More specifically, time and frequency 
domain features were extracted from 3-axis accelerometer raw 
data, while motion features were extracted using the Lucas-
Kanade optical flow method [15], which estimates the motion 
of objects across a series of consecutive image frames.  For the 
classification a two-level approach is followed, the local and 
structured.  The local classification exploits features directly 
extracted by raw sensor data, while the structured 
classification depends on the graph structure.  The local 
classification provides a time independent prediction on the 
contrary to the structured classification that takes into account 
temporal dependencies.   

In the work presented by Song et al. [8] temporal 
trajectory-like features are extracted from sensor data and the 
Fisher Kernel framework is applied to fuse video and temporal 
enhanced sensor features. They evaluated their approach on a 
Multimodal Egocentric Activity dataset which includes 
egocentric videos and sensor data of 20 fine-grained and 
diverse activity categories [9]. Later, Song et al. [9] developed 
a multi-stream Convolutional Neural Network (CNN) to learn 
the spatial and temporal features from egocentric videos and a 
multi-stream Long Short-Term Memory (LSTM) architecture 
to learn the features from multiple sensor streams 
(accelerometer, gyroscope, etc.). The final prediction results 
were achieved through a two-level fusion technique and 
various pooling techniques.   

Possas et al. [7] proposed a Reinforcement Learning 
framework that makes use of policy learning in order to 
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balance two different activity predictors using data from 
motion and vision sensors.  For predictions of sensor data, an 
LSTM network was employed, while for vision predictor a 
mix of CNNs and Recurrent Neural Networks (RNNs), called 
Long-term Recurrent Convolutional Networks (LRCN), is 
used.  The CNN acts as a feature extractor, while the LSTM 
captures the temporal structure of the data. 

In the current study, an automated method for human 
activity recognition is proposed.  The method provides 
inference on the performed activity by fusing information from 
an Inertial Measurement Unit (IMU) and a first-person 
camera.  An LSTM and a ResNet model are developed for the 
recognition of locomotive and stationary activities, 
respectively.  The models were trained on a publicly available 
dataset and were evaluated in a dataset recorded in real-
settings by integrating both IMU and a first-person view 
camera on 3D printed glasses.  The subjects were asked to 
simply follow their normal ADLs. 

II. MATERIALS AND METHODS 

A. The dataset 

Two datasets are exploited.  One publicly available dataset 
for the training and testing of the developed models and an “in-
house” dataset for their validation.  More specifically, the 
DataEgo publicly available dataset [7] contains a natural set of 
activities developed in a wide range of scenarios.  Images from 
the camera are synchronized with readings from the 
accelerometer and gyroscope captured at 15fps and 15Hz, 
respectively. In total, the dataset contains approximately 4 
hours of continuous activity, corresponding to 20 different 
activities.  The recordings were performed in different 
conditions and by different subjects.  The activities were 
captured using the Vuzix M300 Smart Glasses.  The 
accelerometer and gyroscope were synchronized at 15Hz. 

The dataset for the training of the high motion magnitude 
activities recognition model derives from the acquisition of 
data time series from the 9-axis IMU. More specifically, the 
acceleration and gyroscope vectors.  Raw data are captured, 
while the subjects perform five daily physical activities such 
as “Downstairs”, “Running”, “Sitting”, “Upstairs”, 
“Walking”.  Ten sets of “Running”, “Sitting” and “Walking” 
activities are performed.  The duration of each activity is 2min.  
Furthermore, ten sets “Upstairs” and “Downstairs” are 
performed, where the duration of each activity is 1 min.  The 
sample rate and the range for the 3-axis accelerometer are 50 
Hz with and +/- 16 g, respectively, while the sample rate and 
the range for the 3-axis gyroscope are 50 Hz with and +/- 2000 
dps.  The total number of samples are 244.562 time series and 
the total duration of the sets are 1 hour and 20 minutes. 

The dataset for the training of the low motion magnitude 
activities recognition model is the DataEgo.  More 
specifically, only the videos from the indoor activities are 
utilized.  This corresponds to a set of 6 activities such as 
“Reading”, “Writing”, “Working on PC”, “Eating”, 
“Watching TV”, and an “Unknown” (includes every other 
activity).  In total, 42 videos are used.  Each video includes 5 
min of recording and it contains a sequence of 4-6 activities.  
The camera is synchronized at 15 fps and the video resolution 
is 640X360.  The total number of frames and the total time are 
31.260 and 3 hours and 50 minutes, respectively. 

B. Hardware components 

For the acquisition of the “in-house” dataset a 3D printed 
glasses frame, where a 9-axis IMU sensor (MetaMotion R) and 
a first-person camera (FPC) (Intel RealSense D435i) are 
mounted, is utilized.  IMU and FPC communicate with an 
EDGE computing processing unit (LattePanda A864S) 
through a BLE and USB protocol, respectively.  The 
processing unit is powered by a portable power bank of 30000 
mAh in order for the whole hardware components to compose 
a wearable system. 

C. The proposed methodology 

The basic steps of the proposed methodology are depicted 
in Fig. 1: i) High motion magnitude activities recognition, and 
ii) Low motion magnitude activities recognition. 

The IMU sensor is first activated providing input to the 
high motion magnitude activity model.  In case “Sitting” or 
“Standing” activity is predicted, then the low motion 
magnitude activity model is activated and one of the activities 
of “Eating”, “Reading”, “Writing”, “Working on PC”, 
“Unknown” or “Watching TV” is recognized.  If the outcome 
of the low motion magnitude activity model is “Unknown”, 
then the activity recognition process is controlled by the high 
motion magnitude activity model in order one of the activities 
of “Walking”, “Running”, “Upstairs”, “Sitting” or 
“Downstairs” to be detected.  

 
Figure 1: Proposed activity recognition model. 

High motion magnitude activities model 

 For high motion magnitude activities recognition an LSTM 
model is developed [16].  The LSTM architecture consists of 
2 layers with 128 hidden units each.  The activation function 
that has been used is the Rectified Linear Unit (ReLU) [16].  It 
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takes as input batches of time series with a batch size of 500. 
Every batch consists of 200 time points and 6 columns, where 
three columns correspond to the three axes of the 
accelerometer and the rest to the gyroscope.  The number of 
epochs used for the training phase is 300. The model provides 
a vector with the probabilities of the classes as output. The 
LSTM model has been optimized using the Adam algorithm 
[17] with learning rate 0.0025. 

Low motion magnitude activities model 

For low motion magnitude activities recognition, a pre-
trained ResNet50 model is used [18].  It is a CNN trained on a 
million images from the ImageNet database and it can classify 
images into 1000 object categories. The architecture of the 
ResNet50 includes convolution layers, max pooling layers and 
a fully connected layer. The ResNet50 consists of 48 
convolution layers along with one MaxPool and one Average 
Pool layer. The pre-trained model involves 5 stages each one 
having a convolution and an identify block. Each convolution 
and each identify block has 3 convolution layers.  The 
ResNet50 has over 23 million trainable parameters.  The pre-
trained model acts as a feature extractor for the images. 

The ResNet50 as described above, without the fully 
connected layer, was given as input to a new model. The new 
model consists of 2 layers.  The first layer contains 512 hidden 
units and the activation function is the ReLU, while the second 
layer consists of 6 units, each corresponding to a target class, 
with the softmax activation function [19].  Average Pooling 
[19] and Flattening methods [19] were utilized to transform the 
frames into an acceptable form for the first layer. Additionally, 
dropout was applied between the two hidden layers. A dropout 
rate of 0.5 was used, as a weight constraint on those layers. 
The new model receives a sequence of frames with a batch size 
of 32 and it outputs a vector with the probabilities of the 
classes. Only the layers of the new model were trained, while 
the layers of the pre-trained model were stacked. The number 
of epochs during the training phase was 50. The optimization 
algorithm that has been used is the Stochastic Gradient 
Descent (SGD) [19] with learning rate 0.0001. 

Data augmentation has been performed to the training data 

(frames) with the Keras ImageDataGenerator class [20].  This 

class accepts a batch of images and it applies a series of 

random transformations to each image in the batch (rotation 

range, zoom range, width shift range, height shift range, shear 

range, horizontal flip).  The augmentation has been performed 

to the training and not to the validation data.  The rotation 

range was implemented with value 30, zoom range with value 

0.15, width and height shift range with value 0.2 and shear 

range with value 0.15. 

III. RESULTS 

The two models were trained and tested in the datasets 

described in Section II.A, while they were evaluated on a 

validation set recorded under real time conditions.  For the 

training, 80% of the dataset is utilized, while the rest 20% is 

used for the testing. 

More specifically, using the wearable system described in 

Section II.B, data time series corresponding to a set of 5 high 

motor intensity physical activities and a set of 6 low motor 

 
Figure 2: Hign motion magnitude activity recognition model. 

 
Figure 3: Low motion magnitude activity recognition model. 

 
Figure 4: Low motion magnitude activity recognition model. 

intensity indoor activities are recorded from 5 healthy 

volunteers.  Each individual performed the above-mentioned 

set of activities in a 20 minutes session resulting in a total time 

recording of 1 hour and 40 minutes. 

The accuracy of the proposed activity recognition model, 

in the validation dataset, is 87.8%.  The confusion matrix is 

presented in Fig. 4.  The accuracy of each model separately is 

73.63% for the high motion magnitude activities recognition 
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model and 88.15% for the low motion magnitude activities 

recognition model.   

IV. DISCUSSION 

The proposed activity recognition model fuses the 

outcomes of the high and low motion magnitude daily 

activities recognition models with an overall prediction 

accuracy 87.8% in real settings.  The proposed algorithmic 

pipeline is validated utilizing a wearable system emulating the 

behavior of the See Far solution (https://www.see-far.eu/).  

The See Far solution includes smart glasses, based on 

augmented and machine learning technologies, providing 

functionalities for subjects with specific vision impairments 

based on the personalized profile of each subject.  The 

proposed model is part of the See Far personalized profile. 

Similar approaches have been presented in the literature 

by Zhan et al. [2], Possas et al. [7] and Song et al. [8, 9].  A 

comparison of the proposed approach with those works is 

presented in Table I in terms of the dataset utilized, the 

number of activities recognized and the accuracy achieved. 

The proposed pipeline exhibits better performance compared 

to Song et al. and Possas et al. work and similar performance 

to Zhan et al. 

TABLE I.  COMPARISON WITH THE LITERATURE. 

Authors Dataset 
No. of 

activities 

Accuracy 

% 

Zhan et al. [2] In house dataset 12 90.38 

Song et al. [8] Multimodal Egocentric 
Activity dataset 

20 
80.50 

Song et al. [9] 83.70 

Possas et al. [7] 

Multimodal Egocentric 

Activity dataset 
20 84.84 

DataEgo 20 80.00 

Proposed 

approach 
In house dataset 11 87.80 

V. CONCLUSION 

In this work, an algorithmic pipeline has been proposed for 

human activity recognition. The latter is part of the 

personalized profile of the See Far solution and specifically 

it is integrated into the See Far augmented reality smart 

glasses which provide, in real time, services and 

recommendations for subjects suffering from specific 

vision impairments. The developed models utilize data 

streams from an IMU sensor and image frames from an 

FPC and are based on an LSTM architecture and a refined 

CNN model. The performance of the model exhibits 87.8% 

accuracy and provides the inference in real time on an edge 

wearable processing unit. In the near future, we will 

investigate the robustness of the model in more challenging 

activities specifically in the workplace of persons with 

vision impairment without compromising the real time 

performance.  
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