
  

 

Abstract— Heart rate (HR) and respiratory rate (RR) are very 

important physiological variables useful to evaluate the 

cardiorespiratory system. At present, there is a great interest by 

the general population in knowing their health status, quickly 

and easily. Accordingly, several approaches have been proposed 

to achieve that goal. In this study, the simultaneous estimation of 

the instantaneous HR and RR values was achieved by the image 

photoplethysmography (iPPG) technique, in the contact mode 

directly implemented in a smartphone. iPPG results were 

compared with those obtained using specialized biomedical 

sensors such as the electrocardiogram and the respiratory effort 

band. Performance evaluation included three different 

respiratory maneuvers in five healthy volunteers. The absolute 

mean error for instantaneous HR and RR estimations reached 

0.94 ± 0.28 beats per minute and 0.40 ± 0.11 breaths per minute, 

respectively. The mean correlation index was 0.69 ± 0.14 

between the iPPG-derived respiratory signal and the respiratory 

effort reference signal.  

 
Clinical Relevance— These results appear to indicate that the 

contact iPPG method implemented directly on the smartphone 

is a good option, accessible to the common population to estimate 

the instantaneous HR and RR values outside specialized clinical 

environments, e.g., in the point-of-contact office. 
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I. INTRODUCTION 

There are different methods to obtain heart rate (HR) and 
respiratory rate (RR) values, ranging from simple observation 
and auscultation with stethoscopes, to those using biomedical 
devices, e.g., electrocardiography (ECG) to estimate HR or 
capnography to estimate RR [1]. In the case of the latter, 
although individual advantages, a common disadvantage of 
these devices resides in not being easily applied outside of 
clinical and research settings for everyday use by the general 
population, mainly because their high costs, discomfort, and 
specialized use. 

Nowadays, technological advances have allowed the 
smartphones to perform complex computational processes, in 
such a way that there are mobile applications (apps) available 
in the market that innovatively estimate the average HR and 
RR. However, their instantaneous values are not provided. In 
such case, image photoplethysmography (iPPG) technique [2] 
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may be used as an alternative to more established 
photoplethysmography (PPG). The iPPG technique basically 
consists in acquiring video signals from a region of the body 
to analyze the absorption and backscattering of light by living 
tissue. There are two modes of iPPG: 1) contact iPPG, where 
the lens of the video camera and the LED are located on the 
same region of the body, mainly on the index finger, 2) remote 
or non-contact iPPG, where the video camera is located at a 
distance from the subject to detect color changes in a region 
of the body, e.g. face, due to blood flow [2], [3].  

It is known that ECG and iPPG signals are frequency 
modulated by the respiratory signal, which allows the 
estimation of average RR from the analysis of the HR or the 
pulse rate (PR) time series [4], [5]. The fluctuation in the 
cardiac cycle synchronized with respiration is known as 
respiratory sinus arrhythmia (RSA), which is described as a 
cardiac acceleration during inspiration and cardiac 
deceleration during expiration [6]. Taking advantage of RSA, 
various efforts have estimated the average values of HR and 
RR from iPPG signals [1]–[3]. However, most of these efforts 
do not handle the simultaneous estimation of the HR and RR 
time series, e.g., the one using two cameras of a smartphone 
and offline estimation [2]. Consequently, knowing the 
dominant frequency of HR and RR in any time instant was 
not possible, neither to observe the temporal dynamics of 
these two parameters during a given experimental maneuver. 

This work focuses on the application of contact mode 
iPPG directly on a smartphone device to estimate both, the 
instantaneous HR and instantaneous RR values. To this end, 
the smartphone device was used to collect iPPG signals, via 
an Android app developed by our research group, from 
healthy volunteers performing different experimental 

breathing maneuvers. The smartphone-based estimation 
results were quantified in terms of performance indices and 
considering the information from specialized biomedical 
sensors as reference.  

II. MATERIALS AND METHODS 

A. Data Acquisition and Experimental Maneuvers 

In this study, data was acquired from five (𝑁 = 5) healthy 
volunteers with ages ranging from 22 to 27 years (mean ± 
standard deviation) 23.8 ± 1.64 years, weight 73.2 ± 11.96 
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kg and height 1.68 ± 0.11 m, who were previously informed 
about the acquisition protocol and provided their informed 
consent to participate in the study according to Helsinki 
Declaration. The protocol involved the simultaneous 
acquisition of the iPPG signals, directly from a smartphone, 
and ECG and respiratory effort signals, which were 
considered as a reference for the estimation of HR and RR 
time series, respectively. The BiosignalPlux wireless device 
(PLUX Wireless Biosignal S.A., Lisboa, Portugal) was used 
to acquire reference signals at a sampling rate of 1000 Hz. The 
recording of ECG lead I was done via regular adhesive 
Ag/AgCl disposable electrodes. The respiratory effort signal 
was obtained from a piezoelectric band sensor placed around 
the chest of the volunteer. On the other hand, an app was 
developed with the IDE Processing for Android to extract the 
iPPG signals, from the videos of the rear camera of the 
smartphone at 30 frames-per-second (fps) and compute their 
respective HR and RR time series. The smartphone-based 
results were saved in the internal memory of the device in .csv 
format. A Huawei smartphone model P9 Lite 2017 with 3 GB 
RAM memory and a 64-bit octa-core processor at 2.1 GHz 
was used for all recordings. 

Each volunteer was asked to perform three experimental 
maneuvers, with the purpose of modifying their heart and 
respiratory rates, as described below. 

 Spontaneous breathing, in which the volunteer 
breathed naturally in a resting condition for three 
minutes. 

 After exercising, where the volunteer was asked to 
perform squats for 30 s prior to data acquisition, which 
lasted three minutes. 

 Sudden changes in metronome breathing, with the help 
of an audiovisual metronome, the volunteers breathed 
at a fixed rate for one minute and then suddenly 
switched their breathing to another fixed rate. Each 
one followed the sequence 6, 18, 24, 12 and 6 breaths-
per-minute (bpm), equivalent to 0.1, 0.3, 0.4, 0.2, and 
0.1 Hz, respectively. This maneuver lasted five 
minutes. 

The last two maneuvers were intended to evaluate the ability 
of our app to estimate HR and RR with a significant temporal 
variation, i.e., the ability to track these parameters. In each 
maneuver, the volunteers remained seated and with their left 
arms resting on a flat surface. They were asked to hold the 
smartphone in such a way that their left index finger covered 
both the camera lens and the flash, avoiding movements 
during the recording, as shown in Fig. 1. Although the 
developed app allows obtaining all the temporal series of the 
iPPG, HR and RR, the acquired data was processed offline in 
MATLAB (R2017a, The MathWorks, MA, United States) for 
comparison purposes with reference signals.  

B. iPPG Signal Extraction  

The channel averaging algorithm was implemented in the 
app used for the acquisition [5]. This algorithm allows iPPG 
signals to be extracted immediately after reading and 
converting a video frame to RGB format, i.e., it takes as input 
the sequence of frames where the 𝑛-th frame consists of the 
pixels, with coordinates [i, j], given by a vector 𝒄𝑖,𝑗[𝑛] =

[𝑟𝑖,𝑗[𝑛], 𝑔𝑖,𝑗[𝑛], 𝑏𝑖,𝑗[𝑛]]Τ where 𝑟𝑖,𝑗[𝑛], 𝑔𝑖,𝑗[𝑛] and  𝑏𝑖,𝑗[𝑛] are 

the red, green y blue channels, respectively [7]. The 
information from the green channel (G) was used to extract 
the iPPG signals since it has been reported to be less 
susceptible to motion noise and to present greater uniformity 
in different mobile devices [1], [3]. The first step of the 
algorithm consists of selecting the region of interest (ROI) as 
the pixels that mainly contain pulse information, and 
calculating the average of the color intensities using  
 

𝑖𝑃𝑃𝐺[𝑛] =
1

|𝑅𝑂𝐼|
∑ 𝑔𝑖,𝑗[𝑛]

[𝑖,𝑗]∈𝑅𝑂𝐼

 (1) 

where |𝑅𝑂𝐼| denotes the number of pixels in the iPPG signal 
𝑖𝑃𝑃𝐺[𝑛]. ROI averaging is known to reduce noise and 
preserve iPPG signal morphology. In this work, a ROI close 
to the camera flash of 50 x 50 pixels was considered, 
according to our pilot tests and information from a previous 
study [1].  

C. Estimation of HR and RR Time Series  

Before estimating the HR and PR time series, the iPPG 
and reference signals were conditioned as described below 
[5]. First, the iPPG signals were resampled to the same 
sampling frequency of the reference signals, i.e., 1000 Hz, 
using cubic spline interpolation. Then, the resampled signals 
were digitally filtered with 4th order Butterworth IIR 
bandpass filters, with passbands of 0.05-40 Hz for ECG 
signals, 0.05-1.50 Hz for respiratory efforts, and 0.3-5.0 Hz 
for iPPG signals. Then, R-peaks detection in ECG signals was 
done via BioSig library [8], while the local maxima in iPPG 
signals were detected via a custom algorithm developed by 
our research team. 

To estimate the instantaneous HR from the iPPG signals, 
the time intervals between the consecutive local maxima  
were interpolated at 4 Hz using cubic splines [2]. Some of the 
main problems of iPPG signals are slight baseline oscillations, 
the presence of sudden changes by movements of the subject 
or the effect of variations in the intensity of ambient light. To 
ensure a correct estimation of the instantaneous values of HR, 
and consequently of RR, an algorithm for automatic 
correction of local maximums was implemented as 
recommended in [5]. A similar procedure was applied to R-
peaks to obtain ECG-based HR time series, considered as 
reference. It is worth mentioning that due to different starting 
times, the ECG-based and iPPG-based HR time series were 
automatically aligned using a cross-correlation approach. 

Finally, the instantaneous RR values were estimated using 
a time-frequency representation by taking advantage of the 

 

Figure 1. Mobile app developed for smartphones with Android 

operating system. Example of iPPG signal acquisition. 
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frequency modulation of the ECG and iPPG signals, and 
consequently in the HR and PR series, respectively, as an 
effect of the RSA [6]. To this end, we employed the 
spectrogram (SP) to determine the time instants where a given 
frequency component was present in the cardiac signals. The 
SP for a signal of interest 𝑠[𝑛], representing HR or PR in our 
case, was computed accordingly to  

 

𝑆𝑃[𝑛, 𝜔] = |∑ 𝑠[ 𝑚]ℎ[𝑚 − 𝑛]𝑒−𝑗𝜔𝑚

𝐿−1

𝑛=0

|

2

 (2) 

where ℎ[𝑛] denotes the analysis window of length 𝐿, 𝑚 
denotes the current time, and 𝑛 and 𝜔 represent the variables 
of discrete time and digital angular frequency, respectively. 
The SP is known to exhibit a compromise in temporal and 
spectral resolution, for a given window length. In this work, a 
12 s Hamming window was used, with 10 s overlapping 
between adjacent windows, based on previous findings of the 
working group [5]. Since only respiratory rate estimates in a 
normal range were considered, an SP sub-matrix was 

considered in the frequency range of 𝑓
𝑅𝑒𝑠𝑝

 ϵ [0 , 1] Hz. Then, 

the RR series was estimated by finding the maximum value 
in each instant of time (columns) of the SP sub-matrix, for 
each PR and HR time series. An example of the computed SP 
and extracted maxima value (instantaneous RR) obtained 
directly in the smartphone app is shown in Fig. 2.  

D. Performance Indices 

The similarity between the iPPG-based HR and RR time 
series and their counterparts derived from the references, was 
analyzed with three performance indices: 1) the correlation 
coefficient (𝜌), 2) the relative error, and 3) the mean absolute 
error (MAE). In addition, the agreement between the 
measures was studied via Bland-Altman analysis. Finally, 
paired 𝑡-test was used to analyze statistical differences, 
considering a value of 𝑝 < 0.05 as statistically significant. 

III. RESULTS 

An example of the time series of HR, obtained from ECG, 
and PR, obtained from the smartphone, is shown in Fig. 3 for 
a maneuver after physical activity. It can be seen that both 
signals exhibit big oscillations around a high HR value, 
reaching even 90 beats-per-minute (BPM), and that this keeps 
decreasing until reaching a resting frequency of around 60 
BPM after one minute. The high oscillations around the trend 
HR were due to the big respiratory efforts to recover after 
exercising. Table I summarize the results obtained for the 
instantaneous estimation of HR for each respiratory 

maneuver. In general, the similarity between the HR and PR 
series was very high (coefficient 𝜌 close to 1), the errors 
reached a very low value, and the limits of agreement (LoA) 
were narrow, e.g., in the maneuver after physical activity, an 
MAE of 0.97 ± 0.52 BPM was found, and a bias of 0.01 BPM 
with LoA of -2.91 and 2.91 BPM. For the instantaneous 
estimation of HR, no statistically significant bias was found 
for any maneuver. 

Regarding the instantaneous estimation of RR, TableII 
summarizes the results obtained for each respiratory 
maneuver, where the time series of ECG-derived RR and 
iPPG-derived RR (smartphone), are compared to RR 
computed from respiratory effort signal. In general, similar 
results were obtained between both RR-derived estimates. For 
example, for the spontaneous maneuver, an MAE of 0.53 ± 
0.25 bpm and LoA of -2.45 and 2.03 bpm were obtained from 
ECG, while from the iPPG a MAE of 0.51 ± 0.21 bpm and 
LoA of -2.18 and 1.91 bpm, were found. In this maneuver, 
correlation coefficients and the relative error percentages 
were practically the same with both estimation methods. Only 
the ECG-derived RR time series reported a statistically 
significant non-zero bias. It can be seen that the maneuver 
with sudden changes in metronome breathing presented the 
worst performance indices. We consider that this could be due 
to the limitations in the temporal estimation while using the 
SP to obtain instantaneous estimates, i.e. the window length 
used. It is worth mentioning that the SP parameters used for 
the ECG and respiratory effort signals were the same as those 
implemented in the app for the iPPG signal.  

Finally, we started to explore the feasibility of estimating 
a surrogate respiratory signal derived from the iPPG signal. 
To this end, we found a correlation index 𝜌 equal to 0.69 ± 
0.14, for all maneuvers. Fig. 4 shows a spontaneous 
respiratory effort signal (reference) together with the 
corresponding HR (from ECG) and PR (from iPPG) time 
series. Despite the difference between their amplitudes, the 
similarity between the oscillations of the derived signals 
appears to point out the feasibility to continue exploring the 
iPPG, as an alternative to ECG, to follow changes in 
respiratory efforts reflecting the RSA. 

IV. CONCLUSION 

The results presented in this study contribute not only to 
corroborate that contact iPPG signals provide a surrogate of 
ECG-based HR estimates, but also that they allow estimating 
instantaneous RR with a low level of error. The former was 
achieved directly in smartphones via a mobile app, for 

 

Figure 3. Example of computed time series for HR (from ECG) and 
PR (from iPPG, smartphone) corresponding to a respiratory 

maneuver after physical activity. 

 

 

  

Figure 2. Example of spectrogram and instantaneous RR estimation 

obtained directly in the developed Android app, for the first two 

minutes of a maneuver with sudden changes in breathing. 
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different breathing maneuvers in healthy volunteers. 

According to Bland-Altman analysis, the most 
challenging breathing maneuvers to estimate instantaneous 
HR and RR directly from the smartphone correspond to 
spontaneous breathing, and with sudden changes in 
metronome breathing. It is worth mentioning that some of the 
acquired respiratory effort signals (references) presented 
irregularities in their waveform caused by instabilities of the 
band sensor, i.e., oscillations that do not correspond to the 
respiratory effort of the volunteer, which contributed to 
estimation errors. We considered that the performance of RR 
estimation can improved if the reference signals are obtained 
from differential flow sensors or turbine, or using hot wire 
anemometers, as recommended in the protocols related to the 
estimation of respiratory parameters [9]. Unfortunately, such 
type of sensors was not available in our laboratory at the time 
of this study. Another limitation is the small size of the studied 
population, and we are currently working to increase this size. 

Even though the implemented app allowed the successful 
calculation of the HR and RR time series, its main limitation 
is its high sensitivity to user’s motion. Therefore, we are 
currently implementing robust methods to extract iPPG 
signals in the app, e.g., ICA (Independent Component 
Analysis), that allow to contend with motion artifacts. More 
complex algorithms could also be implemented in the app to 
estimate instantaneous RR, e.g., the synchrosqueezing 
transform which reached RR estimates with LoA of −3.62 and 
4.17 bpm using 8-minute conventional PPG records from 
pediatric and adult patients under anesthesia [10]. 

Nevertheless, it is important to keep in mind that, despite its 
simplicity, the spectrogram showed a good performance to 
estimate the RR time series, and that for devices with limited 
processing capabilities, such as mid-range smartphones, this 
type of algorithms with low computational cost is of particular 
interest. Finally, we consider that similar efforts to the one 
carried out in this study will continue to contribute providing 
alternatives for monitoring cardiorespiratory parameters to 
the general population on an anywhere and anytime fashion. 
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Figure 4. Reference respiratory effort signal (black line), and their 

respective HR (ECG, blue line) and PR (iPPG, red line) time series, 

corresponding to a spontaneous respiratory maneuver. 

 

TABLE I. RESULTS FOR INSTANTANEOUS HR ESTIMATION USING SMARTPHONE, CONSIDERING ECG AS REFERENCE. 

 Maneuver ρ (unitless) Error (%) MAE (BPM) Bias (BPM), p LoA (BPM)  

 Spontaneous 0.99 ± 0.01 1.28 ± 1.73 0.94 ± 0.28 0.04, 0.18 -3.03, 3.10  

 After exercise 0.99 ± 0.01 1.34 ± 1.34 0.97 ± 0.52 0.01, 0.94 -2.91, 2.91  

 Sudden changes 0.99 ± 0.01 1.41 ± 1.28 1.03 ± 0.45 0.03, 0.06 -2.73, 2.80  

 : correlation coefficient; LoA: limits of agreement; MAE: mean absolute error; BPM: beats per min
 

TABLE II. RESULTS FOR INSTANTANEOUS RR ESTIMATION USING ECG AND SMARTPHONE, CONSIDERING RESPIRATORY EFFORT AS REFERENCE. 

Maneuver 
ECG RR (smartphone) 

ρ (unitless) Error (%) MAE (bpm) Bias (bpm), p LoA (bpm) ρ (unitless) Error (%) MAE (bpm) Bias (bpm), p LoA (bpm) 

Spontaneous 0.99 ± 0.01 4.44 ± 7.33 0.53 ± 0.25 -0.21, 0.01 -2.45, 2.03 0.99 ± 0.01 4.41 ± 6.66 0.51 ± 0.21 -0.13, 0.10 -2.18, 1.91 

After exercise 0.99 ± 0.01 3.10 ± 3.36 0.37± 0.08 -0.05, 0.01 -1.17, 1.06 0.99 ± 0.01 3.24 ± 3.22 0.40 ± 0.11 -0.01, 0.21 -1.15, 1.12 

Sudden changes 0.98 ± 0.01 6.78 ± 11.67 0.74 ± 0.25 -0.19, 0.01 -3.38, 2.99 0.98 ± 0.01 7.09 ± 15.11 0.73 ± 0.23 0.03, 0.06 -3.24, 3.31 
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