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Abstract— Computer-assisted tools for preterm infants’
movement monitoring in neonatal intensive care unit (NICU)
could support clinicians in highlighting preterm-birth com-
plications. With such a view, in this work we propose a
deep-learning framework for preterm infants’ pose estimation
from depth videos acquired in the actual clinical practice.
The pipeline consists of two consecutive convolutional neural
networks (CNNs). The first CNN (inherited from our previous
work) acts to roughly predict joints and joint-connections
position, while the second CNN (Asy-regression CNN) refines
such predictions to trace the limb pose. Asy-regression relies
on asymmetric convolutions to temporally optimize both the
training and predictions phase. Compared to its counterpart
without asymmetric convolutions, Asy-regression experiences
a reduction in training and prediction time of 66% , while
keeping the root mean square error, computed against manual
pose annotation, merely unchanged. Research mostly works to
develop highly accurate models, few efforts have been invested
to make the training and deployment of such models time-
effective. With a view to make these monitoring technologies
sustainable, here we focused on the second aspect and addressed
the problem of designing a framework as trade-off between
reliability and efficiency.

I. INTRODUCTION

Full-term pregnancy is defined by the World Health Or-
ganization (WHO) as a birth between 37 and 42 weeks
of gestation. Any birth before the 37 gestational weeks is
known as preterm birth. Preterm birth is a major global health
issue, being responsible for the majority of motor, visual and
learning disabilities in children and young adults [1].

Preterm infants are admitted immediately after birth into
Neonatal Intensive Care Unit (NICUs) as they are not fully
developed, weak and have fluctuating vital signs [1]. In
the NICU, clinicians pay particular attention in monitoring
preterm infants’ general movements (GMs). Infants whose
GMs are absent or abnormal are at higher risk of developing
cerebral palsy (CP) [2].

Infants’ movement assessment is today performed with the
qualitative and sporadic observations by trained clinicians of
the infants’ limbs directly at the crib. An automatic, objective
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Fig. 1. Depth-image acquisition setup: the RGB-D camera is positioned
at approximately 40 cm over the infant’s crib.

and continuous measurement of spontaneous infants’ move-
ment could provide a better understanding of infants’ health
status and may reveal the presence of relevant pathology in
advance [3].

A. Related work and main contribution

A number of approaches to quantitatively measure preterm
infants’ spontaneous motility has been proposed in the
literature. Wearable sensors, in [5], [6], are exploited for
limb-movement detection. However, sensors may add an
additional burden to infants’, causing pain and discomfort.

A valuable alternative to wearable sensors is to use non-
obstructive monitoring systems (e.g., RGB or RGB-D cam-
eras) [7]. In [8], [9] algorithms for whole-body movement
detection were implemented. However, monitoring each limb
individually is crucial to highlight GMs impairments.

With the perspective of quantitatively monitoring preterm
infants’ single-limb movement, in our previous work [4], we
implemented a deep learning (DL) framework. The frame-
work processes depth video-clips acquired directly in NICU
(Fig. 1) with two consecutive CNNs, followed by a joint-
linking step. The first CNN (detection CNN) roughly detects
joint and joint-connection, while the second (regression
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Fig. 2. Workflow of the proposed framework to preterm infants’ pose estimation with spatio-temporal features extracted from depth video clips. The input
consists of a temporal clip of 3 consecutive depth frames, which are processed by two convolutional neural networks (CNNs). The first CNN (which is
inherited from our previous work [4]) roughly detects joint and joint-connection while the regression CNN (Asy-regression), which implements asymmetric
3D convolutions, acts to refine joint and joint-connection detection (confidence maps). Batch normalization (BN) and activation with rectified linear unit
activation (ReLu) are implemented after each convolution (Conv).The detail of the asymmetric convolution expressed as 3 cascaded convolutions (1x3x1,
1x1x3, 3x1x1) is shown at the bottom.

Fig. 3. Approximation of a three dimensional (3D) convolutional layer with
kernel size of 3x3x3 (blue) by three cascaded asymmetric 3D convolutional
layers with kernel sizes of 1×3×1 (yellow), 1×1×3 (pink) and 3×1×1 (green).

CNN) precisely regresses joint and joint-connection position.
The output of the regression CNN acts as guidance to trace
limb pose. Such a framework, despite being robust in term
of performance, naturally relies on a high number of param-
eters to process spatio-temporal features. This consequently
increases both training and prediction time with a negative
impact in terms of sustainability [10].

To simultaneously accomplish efficiency while attaining
accuracy, in this work, we leverage asymmetric convolu-
tions [11] in the regression CNN. The traditional three
dimensional (3D) convolutions are here split into three cas-
caded asymmetric one-directional 3D convolutions with the
same size of receptive field as the traditional 3D convolution.
In this work, we focus on the asymmetric version of the re-
gression CNN (Asy-Regression). Indeed, implementing three
cascaded convolutions in the detection CNN would make the
networks even deeper, posing issues related to overfitting or
vanishing gradient [12].

II. METHODS

The workflow of the proposed approach in shown in
Fig. 2 while a graphical representation of the asymmetric
convolutions is shown in Fig. 3.

TABLE I
Asy-Regression CNN architecture with the three cascaded asymmetric

convolutions

Name Kernel (Size / Stride) Channels
Input – 3x21

Layer 1 1x3x1 / 1x1x1 3x64
Layer 1 1x1x3 / 1x1x1 3x64
Layer 1 3x1x1 / 1x1x1 3x64
Layer 2 1x3x1 / 1x1x1 3x128
Layer 2 1x1x3 / 1x1x1 3x128
Layer 2 3x1x1 / 1x1x1 3x128
Layer 3 1x3x1 / 1x1x1 3x256
Layer 3 1x1x3 / 1x1x1 3x256
Layer 3 3x1x1 / 1x1x1 3x256
Layer 4 1x3x1 / 1x1x1 3x256
Layer 4 1x1x3 / 1x1x1 3x256
Layer 4 3x1x1 / 1x1x1 3x256
Layer 5 1x1x1 / 1x1x1 3x256
Output 1x1x1 / 1x1x1 3x20

A. Infant’s limb model and ground truth

As in [4], to train the two consecutive CNNs (i.e., the
detection CNN and the Asy-regression), we adopted temporal
clips. Each clip consisted of 3 consecutive depth frames.
For each depth frame we constructed the associated 20
ground-truth masks (i.e., 12 for the limb-joint and 8 for the
joint-connection). This approach with individual ground truth
masks is robust to eventual joint-occlusions caused by the
presence of operators or limb-self-occlusions. Binary masks
were used to train the detection CNN. For each joint, we
considered all the pixels lying within a circle of radius r
centered at the manually annotated joint-site. Similarly, the
ground-truth for the joint-connection, was the rectangular
region with thickness r and centrally aligned with respect
to the line linking the two subsequent joints.

Gaussian-distributed masks were used to train the Asy-
regression CNN. For each joint, we considered a region
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consisting of all pixels laying in the circle with radius r
centered at the manual annotation site. Such region was the
Gaussian distributed version of the binary mask with stan-
dard deviation equal to 3*r. Similarly, rectangular ground-
truth masks were generated for the joint-connection. The
Gaussian-distributed version of the previously defined binary
mask were depicted along the connection direction with a
standard deviation equal to 3*r.

B. Preterm infants pose estimation framework

As shown in Fig. 2, the proposed framework for limb-pose
estimation has 2 main stages: the detection CNN which is the
same in [4] and the Asy-regression. The detection CNN is
the one presented in [4]. It is inspired by the classic encoder-
decoder architecture of U-Net with a two-branch architecture
aimed at processing joints and joint connections separately.
The detection network is fed with a clip of 3 depth frames.
For each depth frame in the clip, 20 binary ground-truth
affinity maps are generated.

The architecture of the Asy-regression CNN presented in
this work is reported in Table I. The CNN is fed by stacking
the depth temporal clip and the corresponding affinity maps
obtained from the detection CNN. In the first 3 layers, the
number of activations is doubled, ranging from 64 to 256.
The number of activations is then kept constant for the
last two layers. In this sub-network, the 3D convolutional
layer is approximated using asymmetric 3D convolutions,
i.e., three cascaded asymmetric 3D convolutional layers with
kernel sizes of 1×3×1, 1×1×3 and 3×1×1. As shown in
Fig. 3, the three cascaded asymmetric 3D convolutional
layers have same size of receptive field, as the traditional
3D convolutional layer, while decreasing the number of
parameters and computational cost significantly [12].

In both the CNNs, batch normalization and activation with
the rectified linear unit (ReLu) are performed after each
convolutional layer. As in [4], the last step of the framework
consists in linking subsequent joints to trace the skeleton
of the limbs. This is a multi-stage approach: first, joint
candidates are identified from the output joint-confidence
maps using non-maximum suppression, then the candidates
are linked exploiting the joint-connection confidence maps
via a bipartite graph matching.

III. EXPERIMENTAL PROTOCOL

A. Dataset

For this work, we extended the Babypose dataset [13],
which originally accounted for 16 depth videos, to have a
total of 22 depth videos from 22, spontaneously breathing,
preterm infants. The videos were acquired in the NICU of
the G. Salesi Hospital in Ancona, Italy. The Astra Mini S
Orbbec ®was used to record the videos. The camera has
a frame rate of 30 frames per second with image size of
640x480 pixels. Each video is 180 s-long. Joint-annotation
was performed using a custom-built annotation tool1. As
in [4], for each of the 22 videos, 1 frame every 5 was

1https://github.com/roccopietrini/pyPointAnnotator

Fig. 4. Limb-pose estimation performance in terms of median root mean
square distance (RMSD) computed with respect to the ground-truth pose.
The RMSD is reported for each limb, separately. Results are reported for
the Regression in [4] (green) and Asy-regression (pink)-based framework.

extracted and 1000 frames were annotated per infant. Three
subsequent frames were coupled to form a video clip. In
the training set, subsequent depth clips were shifted by one
frame (accounting for 751 depth clips per infants) while no
shifting was performed in the testing set resulting in 83 depth
clips.

B. Training settings

To train the CNNs, each image in the depth clip was
resized to 128x96 pixels. Mean was removed by each image
in the clip. For each image we created the ground-truth masks
with r equal to 6 pixels. For the detection CNN the per-
pixel binary cross entropy was used as loss function and
Adam as optimizer. The Asy-regression network was trained
with the stochastic gradient descent (SGD) as optimizer
(Momentum=0.98) using the mean squared error as loss
function. Both the losses were adapted for multiple maps
training. An initial learning rate of 0.01 was used with a
learning decay of 10% every 10 epochs. The batch size was
equal to 16 and the number of epochs equal to 150 for the
detection network and to 100 for the Asy-regression one.
We selected the best model among the epochs as the one
that maximized the detection accuracy and minimized the
mean absolute error on the validation set, for the detection
and the Asy-regression CNN, respectively.

The training was performed on a Nvidia GeForce RTX
2080 11 GB.

C. Performance metrics and comparison with the literature

To evaluate the performance of the framework in estimat-
ing infants’ limb pose, we computed the root mean square
distance (RMSD) [pixels] for the 128x96 pixel images and
for each infants’ limb.

RMSD =

√√√√ n∑
i=1

(ŷi − yi)2

n
(1)
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TABLE II
Limb-pose estimation performance in terms of median RMSD computed with respect to ground-truth pose. IQR is reported in parentheses. The RMSD is

reported separately for each limb. Results are reported for the traditional 3D and the asymmetric 3D (Asymm) frameworks. Testing time to predict a
triplet of frames is shown too.

Right arm Left arm Right leg Left leg Testing time
RMSD

Asy-regression 16.90 (2.71) 16.59 (2.43) 16.27 (2.97) 13.99 (4.60) 0.03
Regression in Moccia et al. [4] 16.59 (3.49) 16.59 (3.45) 16.10 (3.49) 11.95 (5.76) 0.05

where ỹi and yi are the predicted and observed joint coordi-
nates, respectively, and n is the number of observations. The
Asy-regression was compared against its closer variant (i.e.,
the regression in [4]).

The RMSD median values for pose estimation were
calculated for both the Asy-regression and the regression
in [4].

IV. RESULTS

The achieved results in terms of RMSD for both the two
CNNs are shown in Table II. The RMSD boxplot are shown
in Fig. 4. These quantitative results showed that introducing
the asymmetric convolutions kept the results in terms of
error almost unchanged. Interquartile ranges (IQRs) was
reported in Table II and were always lower than 4.60 pixel
for the Asy-regression, while, for the regression in [4], were
lower than 5.76. Thus, the introduction of the asymmetric
convolution has increased the network generalization ability.
Both the training and the prediction time was calculated to
prove the effectiveness of the asymmetric convolutions in
terms of temporal optimization. Asymmetric 3D convolution
produced a reduction of the training time of 66%. The time
to predict a depth-clip (Table II) was on average 0.03 s for
the Asy-regression while for the regression in [4] was 0.05s.

V. DISCUSSION AND CONCLUSION

Monitoring preterm infants’ movement in NICUs, through
non-contact measures, is crucial for early assessing preterm-
birth-related complications. In our previous work [4], we
proposed a novel framework for non-intrusive monitoring of
preterm infants’ limbs. It provides an innovative approach
for limb-pose estimation from spatio-temporal features ex-
tracted from depth video-clips. Although being robust, this
approach was very parameter-intensive, resulting in too much
time spent on training and testing phases. Searching for a
trade-off between reliability and efficiency, in this work we
implemented the Asy-regression network with asymmetric
convolutions [12]. As showed in Sec. IV, such variation from
the original version in [4], was able at lowering both the
training and the prediction time of the 66% while keeping
the RMSD almost unchanged (mean ∆RMSD between the
two architectures = 0.63 pixels).

Nowadays, researchers are all geared towards finding the
most effective models, few effort is spent on making such
models more efficient. Guided by these premises and the
results achieved by this work, natural extension of the

proposed approach would try to implement even lighter mod-
els [11]. This would enable the implementation of sustainable
automated and intelligent monitoring systems in scenarios
with fewer computational resources.
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