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Abstract— In the era of Internet of Things (IoT), an in-
creasing amount of sensors is being integrated into intelligent
wearable devices. These sensors have the potential to produce
a large quantity of physiological data streams to be analyzed
in order to produce meaningful and actionable information.
An important part of this processing is usually located in the
device itself and takes the form of embedded algorithms which
are executed into the onboard microcontroller (MCU). As data
processing algorithms have become more complex due to, in
part, the disruption of machine learning, they are taking an
increasing part of MCU time becoming one of the main driving
factors in the energy budget of the overall embedded system. We
propose to integrate such algorithms into dedicated low-power
circuits making the power consumption of the processing part
negligible to the overall system. We provide the results of several
implementations of a pre-trained physical activity classifier
used in smartwatches and wristbands. The algorithm combines
signal processing for feature extraction and machine learning
in the form of decision trees for physical activity classification.
We show how an in-silicon implementation decreases up to
0.1 µW the power consumption compared to 73 µW on a
general-purpose ARM’s Cortex-M0 MCU.

I. INTRODUCTION

Wearable devices provide the user with a low-cost so-
lution to continuously monitor physiological parameters in
an inconspicuous way. This domain has experienced a rapid
growth in the last decade, in part, as a consequence of the
Quantified Self movement who pledges to track personal
data and physiological signals under the premise to develop
healthy behaviors in the user [1]. Wearable devices have
achieved great success both for personal healthcare manage-
ment (e.g., wristbands [2], smart-vests [3]) and for support to
clinical treatments [4]. In this context, autonomy (i.e., battery
life) is a key factor in order for the device to be able to
monitor the user for long periods of time [5].

In the context of human kinetics, wearable devices mostly
focus on detecting, classifying, and profiling the kinetic
information of the wearer gathered with inertial sensors [6].
In this space, accelerometers have taken the lead due to
their good balance between kinetic information acquired,
power consumption, cost, and miniaturization. Moreover,
the most prevalent everyday activities (resting, walking, and
running) can successfully be classified with high precision
and recall [7], [8].

From a system’s perspective, a wearable device that
continuously monitors physiological data can be roughly
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simplified to two interlocked blocks: a block containing a
specific set of sensors capable of capturing raw data and a
block containing the algorithm, or set of algorithms, capable
of processing such data in order to provide actionable data.
Traditionally the processing of raw sensor signals has taken
place in the microcontroller with algorithms designed to the
specific application. Accelerometers have improved up to two
orders of magnitude their power consumption in the past
decade [9], rendering the algorithmic processing in the MCU
the most power-hungry element in the chain. By integrating
the algorithms directly into the sensor through a dedicated
Application-Specific Integrated Circuit (ASIC) instead of
deferring the computation to the MCU, physical activity
tracking wearables would benefit from extended battery life
and would enable an uninterrupted data analysis even when
energy is scarce.

In the present study, we present the results of adapting a
physical activity tracker algorithm into several increasingly
low-power architectures. The algorithm relies exclusively on
an accelerometer as data input, operates in a sample-by-
sample basis, and combines signal processing for feature
extraction and machine learning (pre-trained decision trees)
for the inference of the physical activity. We evaluate the
tradeoffs between power consumption and flexibility of the
algorithm implementation into two off-the-shelf microcon-
trollers (one containing a Floating Point Unit and the other
without, and two dedicated ASIC implementations (a low
power processor and an optimized hardware accelerator).

In the following section, we describe the architecture of the
algorithm as well as the data in which it has been trained.
Then, we proceed to detail the evaluation metrics and the
different hardware architectures that have been tested. And
finally, we compare the results.

II. MATERIALS

In this section, we provide an overview of the algorithm
that we used in our analysis, and then, we provide details on
the data that was used to train some of its blocks.

A. Activity algorithm overview

The physical activity tracking algorithm takes as input the
raw 3-axis accelerometer signals at 25 Hz and outputs the
most likely activity among the following classes: Rest, Walk,
Run, Bike, or Other. It can be grouped into 6 blocks, as
shown in Figure 1. The first 5 blocks are based on signal
processing and dedicated towards extracting signal features
that discriminate the different physical activities. The last
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block contains a balanced binary decision tree based on the
aforementioned features. More precisely the blocks are:

• Signal Conditioning: The raw accelerometer signal is
low-passed filter in order to remove high-frequency
noise.

• Coordinates Conversion: The three coordinates are
transformed and combined in vector form in order to
be independent from sensor location and orientation.

• Multiple Filtering Stages: Several non-linear filters are
applied to reduce outliers and to create time-consistency.

• Subband Splitting: The main feature signal is split into
5 frequency sub-bands.

• Tracking Filters: On each sub-band, the main frequency
is identified and tracked.

• Classifier: A binary classification tree is used to esti-
mate, for each sample, the likelihood of such sample
belonging to one of the physical activity classes. The
classifier uses the features extracted in the previous
block and was trained offline with the data detailed
in Section II-B. Further details on the training of the
algorithm can be found in [10].
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Fig. 1: Block diagram of the physical activity algorithm.

In Figure 2, we show the response of the described
algorithm to a change of physical activity. In particular, it
illustrates the transition between Walk and Run. A visual
inspection of the acceleration signals shows that the tran-
sition occurs approximately at t = 27s. At that point in
time, the likelihood of the Run class starts to raise smoothly
and the likelihood of the Walk class starts to drop smoothly.
The algorithm outputs the class with the highest likelihood
as long as the likelihood is higher than 50%, otherwise,
the algorithm outputs Other. Note that the latency in the
estimation of the activity with this example amounted to
approximately 3 seconds. This lag is determined by the
coefficient parameters of the 3rd block of the algorithm.

B. Data

In order to train the algorithm, a smart wrist-band inte-
grating a three-axial accelerometer from PulseOn was used1.
Inertial signals were collected with a sampling frequency of
25 Hz, 12 bit resolution, and ±8g range.

The acceleration forces from the wrist-located sensors
were recorded on 140 individuals (76 male, 64 female) in 18

1https://pulseon.com/
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Fig. 2: Output of the physical activity algorithm to a
change of activity. (top) Raw accelerometer signals,

(middle) Smoothed probabilities of each class,
(middle) Output of the classifier

recording campaigns. The data collection was conducted be-
tween 2014 and 2017 in Tampere (Finland), Espoo (Finland),
and Neuchâtel (Switzerland)2 and included in-lab protocols
and real-life activities. A total number of 418 recordings
spanning more than 440 hours of raw data was gathered.

III. METHODS

In this section, we discuss the algorithm’s implementation
at different levels of abstraction: out-of-the-shelf System-on-
Chip (SoC) MCUs, on an application-specific instruction set
processor, and on an ASIC.

A. Out-of-the-shelf microcontrollers

In [10], the algorithm was implemented in C using fixed-
point arithmetic as well as floating-point arithmetic. Each
implementation targeted a different SoC. The fixed-point
implementation was conceived for systems without Floating
Point Units (FPU) on its core. For that purpose the version
in fixed-point arithmetic implemented manually all 32-bit
divisions as bitwise shifts. In particular, the algorithm was
benchmarked on a Nordic Semiconductor’s nRF51832 and
nRF52832 SoC using an ARM’s Cortex-M0 and Cortex-
M4f core respectively. The compilation was carried over with
arm-gcc with -O3 optimization.

2The experimental procedures described in this paper complied with the
principles of Helsinki Declaration of 1975, as revised in 2000. All subjects
gave informed consent to participate and they had a right to withdraw from
the study at any time. Their information was anonymized prior the analysis.
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B. Application-specific instruction set processor

The second approach consists in running the existing
fixed-point implementation of the algorithm into an applica-
tion specific resource-constrained microcontroller designed
with ultra-low power consumption in mind. We chose to use
our icyflex-V processor [11] that is RISC-V3 compatible and
that is optimized for low power. The icyflex-V is a classical
4-stage pipeline implementing the RV32IMC instruction
set architecture (ISA). Data forwarding is implemented to
avoid pipeline stalls on both arithmetic logic unit (ALU)
outputs and load-store (LSU) outputs caused by read-after-
write dependencies. The main target of the core is to be
embedded efficiently with a small silicon footprint in ultra-
low power system-on-chips. Thus, the main criteria for
icyflex-V design are an excellent code density (thanks to
compressed instruction) and a limited gate-count. Several
actions were further taken to reduce the gate-count: the M
extension of the ISA is implemented with fast and low-power
hardware multiplier. Similarly, floating-point operation is left
as software emulation. In order to achieve state-of-the-art
performance though, the 4-stage pipeline was preferred over
a 2-stage pipeline that would assuredly be more compact
but which would have degraded performances drastically.
Similarly, the instruction prefetch buffer implements a simple
yet effective branch prediction mechanism that improves the
core efficiency at a reasonable gate-count cost. Note that the
operations needed by the algorithm are well supported by
such processor hardware.

C. Model-based activity tracking algorithm accelerator

In this approach, the goal is to design a dedicated hardware
accelerator for the algorithm. For that, we started from a
fixed-point C implementation of the algorithm and generated
the equivalent Hardware Description Language (HDL) code
using Simulink™from MathWorks. The testing capabilities
of Simulink™enabled us to perform a bit-true simulation
of the final implementation. This method results in a faster
hardware design any time there is a new feature to imple-
ment. Critical blocks from the generated HDL where then
optimized (e.g., CORDIC part). This model-based activity
tracking algorithm accelerator option is the most promising
for low power and small silicon area footprint because
it results in a fine-tuned dedicated hardware accelerator
implementing the algorithm with the minimum hardware, but
it is the least flexible of all (as opposed to the processor
approach in Section III-B, where algorithm software can be
updated and be executed on the same hardware).

D. Implementation assessment using sub-threshold design

An extra refinement can be applied to the implemen-
tations presented in Sections III-C and III-B in order to
further reduce power consumption. We used the ultra-low-
power technology known as sub-threshold design [12]. This
technology uses the transistors in the sub-threshold region
by reducing the supply voltage (e.g., from 1V to 0.5V).

3https://riscv.org/

This supply voltage reduction results in the main advantage
of sub-threshold design for ultra-low power applications,
that is that dynamic consumption quadratically decreases
with the supply voltage (e.g., 4x reduction can be achieved
when going from 1V to 0.5V). Consequently, battery life
can be extended and battery size can be reduced, which
is key for wearable devices. Moreover, at this low voltage
levels, designs are very well suited to run up to the MHz
regime, which is a perfect match for the activity tracking
algorithm. However, circuits become more sensitive to pro-
cess, voltage and temperature variations (e.g., 2 orders of
magnitude difference in terms of frequency when comparing
best versus worst case conditions). For that last reason, for
this work we have chosen specifically tailored standard cells
and memories for sub-threshold design that make use of body
bias to compensate for these process, voltage and temperature
variations. Previous systems using this technology have been
shown to consume as low as 2.5 µW/MHz [13].

IV. RESULTS

We show in Table I the power necessary to run each
implementation of the algorithm on their corresponding
hardware. In order to make the measurements comparable,
we defined a standard testing dataset that recreates the daily
use of an active user. This dataset contained 15 hours of
sleep/rest, 4 hours of walking, 1 hour of running, and 4 hours
of undefined activities. In order to provide a benchmark, we
also provide the power necessary to run the 3D accelerometer
ADXL363 from Analog Devices. Its power consumption is
4µW which puts him in the range of the new generation
ultra-low-power accelerometers.

As shown in Table I, the power consumption obtained with
the general-purpose MCUs (Cortex-M0 and Cortex-M4f)
dominates the column of the power consumption. Note that
in the worst case (Cortex-M0), the energy spent by the MCU
is 22.6 times greater than the accelerometer. A significant
diminution in power consumption can be observed when
using the icyflex-V technology and the dedicated hardware.
Note, however, that this diminution is compensated by a
reduction in flexibility. This means that the algorithm can be
modified at any time in the generic microcontroller whereas
the accelerator has the algorithm burned in-silicon.

The results improve even further when we use sub-
threshold technology at 0.5V (two last rows in Table I). The
accelerator consumption stays well below the consumption of
the algorithm in a standard microcontroller (by around three
orders of magnitude). The dynamic part becomes negligible
due to low toggling activity and low frequency of operation.
This makes very low leakage and low voltage technologies
suitable for this application. The estimated power also stays
well below the 4µW consumption for a state of the art
accelerometer, rendering the intelligence attached to the
sensor essentially free in power terms.

V. CONCLUSIONS

In this study, we have presented a variety of implemen-
tations of a pre-trained physical activity classifier used in
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TABLE I: Power consumption estimation depending on
implementation.

Hardware Techno. Power used Algorithm Flexibility
voltage by the to sensor
supply algorithm power ratio

Cortex-M0 1.8V 90.7 µW 22.6 High
Cortex-M4f 1.8V 27.5 µW 6.9 High
icyflex-V 1.0V 16.0 µW 4 Medium
Accelerator 1.0V 1.0 µW 0.25 Low
icyflex-V 0.5V 0.8 µW 0.2 Medium
Accelerator 0.5V 0.1 µW 0.025 Low

smartwatches and wristbands. The implementations range
from general-purpose MCUs to dedicated ASICs. We showed
how an in-silicon implementation decreases up to 0.1 µW
the power consumption compared to 73 µW on a general-
purpose ARM’s Cortex-M0 MCU. These figures correspond
to 22.6 times and 0.025 times the power consumption of a
state of the art accelerometer from Analog Devices.

Such decrease in power consumption to run the physical
activity tracking algorithm is the next step in the new
generation of battery-powered wearable sensors. We believe
that this new architecture opens a new array of possibilities
for health-related applications, wearables, continuous data
monitoring, and energy-harvesting-based devices, where the
least amount of battery or energy suffices to keep recording
metrics, statistics and data without gaps. This will not only
free the user from tedious battery-charging each of its IoT
devices, but will ensure continuous data monitoring without
current hassles.
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