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Abstract— In active prostheses, it is desired to achieve target
poses for a given family of tasks, for example, in the task
of forward reaching using a transhumeral prosthesis with
coordinated joint movements. To do so, it is necessary to
distinguish these target poses accurately using the input features
(e.g. kinematic and sEMG) obtained from the human users.
However, the input features have conventionally been selected
through human observations and influenced heavily by the
availability of sensors in this context, which may not always
yield the most relevant information to differentiate the target
poses in the given task. In order to better select from a pool of
available input features, those most appropriate for a given set
of target poses, a measure that correlates well with the resulting
classification accuracy is required so that it can inform the
interface design process. In this paper, a scatter-matrix based
class separability measure is adopted to quantitatively evaluate
the separability of the target poses from their corresponding
input features. A human experiment was performed on ten
able-bodied subjects. Subjects were asked to perform forward-
reaching movements with their arms on nine target poses in a
virtual reality (VR) platform and the corresponding kinematic
information of their arm movement and muscle activities
were recorded. The accuracy of the prosthetic interface in
determining the intended target poses of the human user during
forward reaching is evaluated for different combinations of
input features, selected from the kinematic and sEMG sensors
worn by the users. The results demonstrate that employing
input features that yield a high separability measure between
target poses results in a high accuracy in identifying the
intended target poses in the execution of the task.

I. INTRODUCTION

Active transhumeral (TH) prostheses, unlike transradial
(TR) ones [1], which are mainly used to perform fine motor
tasks such as object grasping, are also used to perform gross
motor tasks such as forward reaching with a target pose. By
active, we refer to motorised prostheses, where input signals
measured by worn sensors are processed through a prosthetic
interface to inform the intended prosthesis movements. TH
prosthetic interfaces that can generate coordinated motion
between residual limb and prosthesis have recently gained
much attention. Recent work in [2] has validated that such
interfaces can be more efficient and intuitive in performing
reaching tasks than traditional two-site surface electromyog-
raphy (sEMG) interface and is preferred by users [3].

For the task of reaching the target poses, it is necessary for
the interface to be able to distinguish accurately the intended

This project is funded by the Valma Angliss Trust and The University of
Melbourne.

T. Yu, R. Garcia-Rosas, D. Oetomo, and Y. Tan are with the
School of Electrical, Mechanical and Infrastructure Engineering, and
P. Choong with the Department of Surgery, The University of
Melbourne, VIC 3010, Australia. {tianshiy}@student.unimelb.edu.au;
{garcia.r,alireza.mohammadi,yingt,pchoong,doetomo}@unimelb.edu.au.

poses by the human user. Some input features naturally
contain less distinguishing information content to particular
target poses than others. For example, in the case of a
transhumeral amputees, a set of kinematic sensors measuring
the joint angles of the residual shoulder would be a poor
predictor to what the users intend to do with their prosthetic
elbow [4]. In such a scenario, there are multiple possible
target poses that share the same shoulder joint angles, but
different amount of intended elbow flexion. It is therefore
important to consider the information content of the available
input features in order to select those most appropriate for
the given target poses that we require the prosthetic interface
to distinguish.

Existing active TH prosthetic interfaces in the liter-
ature have reported trial-and-error methods or designer-
observational approaches when designing the input features.
The choices of sensors also often depend on the conve-
niently available sensors for the application. The common
practice [2], [5]–[7] is that kinematic features extracted from
residual limb and body kinematics were chosen based on
different observation of human motor behaviours. Shoulder
rotation features were the most commonly used [2], [5]
according to the study on upper-extremity joint coordination
[8], [9]. In [6], scapular translational movement features
were added, as the corresponding movement was observed
during the forward reaching to the proximal end. In recent
years, the combined use of kinematics and muscle activity
sensors (sEMG) have been considered [10]–[12]. Naturally,
this provides access to a wider range of input information,
bringing the potential for more accurate identification of
the human user intention. In [10], 28 sEMG features from
seven electrodes and three shoulder kinematics features were
used altogether. While such setup is suited for a laboratory
experiment, the need for such numerous number of sensors
may not be practical for daily usage. It is necessary to
identify the most useful input features for the intended target
poses.

In order to select the appropriate input features, it is
necessary for a quantitative surrogate measure to be estab-
lished, which correlates well with the resulting accuracy of
the selected input features in differentiating the target poses
needed in a given task. In this work, the concept of class-
separability and a widely-used scatter-matrix based measure
[13] are adopted to quantitatively evaluate the separability
of the target poses as described by input features selected
from the available pool. The task is limited herein to forward
reaching motion, with target poses similar to [6], [10] used
for the purpose of classification. Three common feature
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modality cases in prosthetic context are investigated: (1)
using kinematic features only [14], (2) using sEMG features
only [15] and (3) combining kinematic and sEMG features
[10]. Data were collected from a human-subject experiment
in a virtual reality (VR) environment. The experiments were
performed on ten able-bodied subjects for a forward reaching
task on nine target poses. An extensively used classifier based
on linear discriminant analysis (LDA) was trained using the
collected data [16], [17]. The resulting classification accuracy
of the prosthetic interface using a set of input features is
compared to the corresponding separability measures.

II. METHODOLOGY

The experiment and the methodology of the study is
described below.

A. Target pose separability

Class separability is widely used to evaluate the input
features in a classification problem. Scatter-matrix based
measurement [13] is adopted in this paper for its simplicity
and generality. Let F be the set containing D candidate
features, F = {f1, ..., fD}. The target pose set is denoted
as P with C target classes with P = {T1, ..., TC}.

The sampled data matrix X = [x1, ...,xn] ∈ Rd×n

contains n samples of the d selected features in some set
Fs ⊆ F . Each sample xi (i = 1, ..., n) is assigned to a
label with c classes in some target subset Ps ⊆ P that is of
interest. Let nj be the number of samples in the jth class,
i.e.,

∑c
j=1 nj = n . Then, by using an appropriate relabeling

of n samples, denote xj,k (j = 1, . . . , c, k = 1, . . . , nj) to
represent the kth samples of the jth class. The inter-class
and intra-class scatter matrix SB and SW are

SB =

c∑
j=1

nj(mj −m)(mj −m)T , (1)

SW =

c∑
j=1

nj∑
k=1

(xj,k −mj)(xj,k −mj)
T , (2)

where mj ∈ Rd is the mean of the jth class, computed
from the sampled data in the jth class while m ∈ Rd is the
mean of all samples. Finally, the target pose separability s
provided by any features set Fs for any class set of Ps, is
evaluated by ratio trace of SB and SW

s = tr
(
S−1
W SB

)
if det(SW ) 6= 0, (3)

where det(·) is the determinant of a square matrix. The
separability measure s is always positive. Note that the
higher the s, the better the separability and vice versa. The
determinant det(SW ) is zero only if at least one of the
features is a linear combination of the other features, which
is unlikely due to human movement variability.

B. Experiment description and protocol

A human experiment with ten able-bodied subjects was
conducted in VR environment to record a set of kinematic
and sEMG input features associated with the human subject
arm and upper body movements reaching for target poses

placed along the parasagittal plane of extending upper limb
forward. The procedure was approved by the University of
Melbourne Human Research Ethics Committee, project ID
11878. Informed consent was received from all subjects. Sub-
jects were asked to perform forward reaching task towards
nine target poses, marked in the head mounted display based
VR environment, for ten iterations each, see Fig. 1(a). The
final reaching poses were held for one second to allow the
quasi-static readings upon reaching to be collected.

Nine target poses (T1-T9) set in the parasagittal plane were
set based on the joint space human arm displacements, as
illustrated in Fig. 1(b). To set the locations of the targets,
subjects were required to reach the target joint poses as
shown in Fig. 1(b) during the initialisation of the experiment.
The set contained three groups of targets, namely target 1-3
(T1,T2,T3), target 4-6 (T4,T5,T6) and target 7-9 (T7,T8,T9).
Targets in the same group have the same shoulder flex-
ion/extension pose, but different elbow poses such that the
target poses are indistinguishable from observing only the
primary kinematic feature (shoulder flexion/extension). It
should be noted that alternatively one can consider the
prosthetic poses (e.g. elbow flexion/extension poses) as the
target poses instead of the whole upper limb poses if only
the prosthetic poses are of interest.

C. Data collection and preprocessing

Signals from kinematic and sEMG wearable sensors were
collected, namely body and arm posture and sEMG. The
data sampling rates were 90 and 1111 Hz, respectively.
The sensor deployment is shown in Fig. 1(a). Three HTC
VIVE Trackers with motion capture sensors on the surface
and an embedded Inertial Measurement Unit (IMU) were
attached to the subjects’ upper-arm, shoulder acromion and
C7 vertebrae to acquire upper-body and upper-arm postural
data. Another tracker on the forearm and the controller in
hand were utilised to control the arm in VR environment
only. Despite the usage of both motion capture and IMUs for
kinematic data collection herein, this can also be achieved
using IMU-only as in [5]. Seven Delsys Trigno sEMG
electrodes were placed on the dominant upper-arm of the
subjects: two on the biceps long/short heads (B-LH/B-SH),
two on the triceps lateral/long heads (T-LAH/T-LH), three on
the anterior, middle and posterior of deltoid (D-A/D-M/D-P).
The signals were filtered by a 4th order Butterworth band-
pass filter with 10-500 Hz passband. Then the outliers which

Fig. 1. (a) Experiment setup and sensor deployment, (b) Target set with
target poses within the sagittal plane, T1-T9 denote the target poses.
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were more than three standard deviations from the mean were
removed.

D. Feature extraction

The candidate features were extracted from the quasi-static
data during the last-second holding period upon reaching
the target poses in a coordinated fashion. For each of the
seven signal sites of sEMG, a sliding window of length
200ms overlapping 100ms (resulting 10Hz sampling rate)
was used to extract four time domain features: mean absolute
value (MAV), wave length (WL), zero crossing (ZC), slope
change (SC) as defined in [16]. Kinematic posture data
were downsampled to 10Hz as well. The kinematic features
are: shoulder flexion/extension (Sfe) and abduction/adduction
(Saa); shoulder scapular depression/elevation (Scde) and pro-
traction/retraction (Scpr); and trunk flexion/extension (Tfe)
and left/right bending (Tb). Since the targets were in the
parasagittal plane, shoulder internal/external rotation and
trunk rotation was not considered. In total, D = 34 features
were extracted as the candidates and were normalised to
zero-mean and unit-variance for each subject. The motion
trajectory of position, velocity and acceleration were not
considered.

E. Evaluation of kinematic and sEMG features

Three common scenarios of feature modality in pros-
thetic interface context are investigated herein, which are
(1) kinematic-only, (2) sEMG-only and (3) kinematic-sEMG
features (combined). In this paper, we chose to evaluate
the performance of the resulting prosthesis interface using
only two input features. This was selected to keep a low
complexity not only for the resulting interface, but also to

maintain the focus on the discussion in this paper and to
keep a fair comparison in the number of features in this
short paper. The two features (d = 2) with the highest
separability for the interested target pose set Ps={T1-T9}
(Ps will be omitted for simplicity henceforth) was selected
through brute-force evaluation of all combinations of input
features. An LDA based classifier was trained to test the
accuracy of the selected input features in distinguishing the
target poses, where the training set (60%, six iterations) and
testing set (40%, four iterations) were split randomly for each
target pose.

III. RESULTS AND DISCUSSION

Brute-force evaluation of separability measure for all
combination of input feature pairs yielded the following
selections: (1) Sfe, Scpr for kinematic-only (2) B-LH (MAV),
D-M (SC) for sEMG-only and (3) Sfe, B-LH (MAV) for
combined kinematic-sEMG.

Fig. 2(a) shows the separability of all the pair-wise com-
binations of target poses (numbered 1 to 9), using input fea-
tures from kinematic only sensors, sEMG only sensors and
the combined kinematic-sEMG sensors. Darker and lighter
colours represent lower and higher separability, respectively.
Black diagonal entries mean zero separability for target poses
from the same class (the same target poses). Ideally, all off-
diagonal entries should be white, meaning all target poses i
should be separable from target pose j, where i 6= j.

Fig. 2(b) shows the accuracy of the classification results
for the corresponding cases (kinematics, sEMG, combined
kinematic-sEMG) in the form of confusion matrices. A
high degree of correlation can be observed visually between
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Fig. 2. Fig. (a) shows the heatmap of the class separability measures for the combined results of all subjects, with input features selected from
kinematic-sensor-based features, sEMG-sensor-based features and combined kinematic and sEMG features. Darker and lighter colours show lower and
higher separability, respectively. Fig. (b) shows the resulting accuracy of the corresponding prosthesis interface, represented by a confusion matrix of
classification results using the same input feature pair.
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TABLE I
MEAN & MINIMUM SEPARABILITY BETWEEN CLASSES AND

CLASSIFICATION ACCURACY PERCENTAGE FOR THREE MODALITY CASES

Item kinematic-only sEMG-only kinematic-sEMG
Separability (s)

Mean-s 9.93 2.45 9.68
Min-s 0.02 0.20 0.31

Classification Accuracy (%)
Group 52.22 51.67 68.06

S1 44.44 58.33 83.33
S2 55.56 72.22 80.56
S3 50.00 44.44 61.11
S4 66.67 41.67 50.00
S5 38.89 41.67 58.33
S6 69.44 52.78 77.78
S7 61.11 69.44 91.67
S8 38.89 50.00 75.00
S9 44.44 38.89 50.00

S10 52.78 47.22 52.78

the separability (Fig. 2(a)) and the resulting accuracy (Fig.
2(b)), where entries with lower separability result in lower
classification accuracy.

Quantitatively, the average and minimum separability mea-
sures between two target poses were calculated and shown
in Tab. I (in the first two rows). The Tab. I also shows the
classification accuracy for each subject (and the group) under
three different modalities of the input features.

A significant difference of mean separability (p < 0.01
using two-way ANOVA) was found between sEMG-only and
kinematic-sEMG, and the latter had both higher separability
and classification accuracy. Though no significant difference
in mean separability was found between kinematic-only
and kinematic-sEMG, the minimum value was improved
significantly in the kinematic-sEMG case. The kinematic-
sEMG case, where the input feature selection can be made
out of a wider range of input sensor modalities, showed
a significantly higher separability between any two target
poses, resulting in higher classification accuracy being ob-
served over the group results and most subjects, except in
Subject S4.

As an additional observation, it can be seen from Fig.
2 and Tab. I that having access to both the kinematics
and sEMG modality of sensors improved the classification
accuracy, which agree with the findings in [10]. As expected,
the kinematic features performed well differentiating target
poses in different shoulder poses, but performed poorly in
differentiating targets with common shoulder poses (e.g.
{T1-T3}, {T4-T6} and {T7-T9}). This was equally picked
up by the separability measures as shown in Fig. 2(a). When
used in isolation, the sEMG did not produce any better
separability nor accuracy relative to kinematics-only features.
However, it significantly assisted in distinguishing the target
poses with common shoulder angles, which was confounding
the outcomes of the kinematic features.

IV. CONCLUSION

The separability measure, proposed here for adoption to
the problem of prosthetic interface input feature evaluation,
is shown to be a valid surrogate measure of the accuracy

in classifying the target poses and to determine the N most
effective features. The classification results also indicates the
need for systematically selecting a larger input feature subset
from the available sensor information. It is worth noting that
the selection needs to trade off efficacy and complexity. A
small number of sensors is preferred on wearable devices
as in [17] to reduce the complexity. Meanwhile, sufficient
separability should be retained for efficacy. Future work will
investigate the use of this measure in an optimisation exercise
to determine an optimal set of input features for a given set
of target poses.

REFERENCES

[1] A. Mohammadi et al., “A practical 3d-printed soft robotic prosthetic
hand with multi-articulating capabilities,” PloS one, vol. 15, no. 5,
p. e0232766, 2020.

[2] M. Merad et al., “Assessment of an automatic prosthetic elbow
control strategy using residual limb motion for transhumeral amputated
individuals with socket or osseointegrated prostheses,” IEEE Trans.
Med. Robot. Bionics., vol. 2, no. 1, pp. 1–1, 2020.

[3] F. Cordella et al., “Literature review on needs of upper limb prosthesis
users,” Front. Neurosci., vol. 10, p. 209, 2016.

[4] R. Garcia-Rosas, D. Oetomo, C. Manzie, Y. Tan, and P. Choong,
“Task-space Synergies for Reaching using Upper-limb Prostheses,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 12, pp. 2966–
2977, 2020.

[5] R. Garcia-Rosas, T. Yu, D. Oetomo, C. Manzie, Y. Tan, and P. Choong,
“Exploiting inherent human motor behaviour in the online personalisa-
tion of human-prosthetic interfaces,” IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 1973–1980, 2021.

[6] R. R. Kaliki, R. Davoodi, and G. E. Loeb, “Evaluation of a noninvasive
command scheme for upper-limb prostheses in a virtual reality reach
and grasp task,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 792–
802, 2013.
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