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Abstract— The study of human reaction time (RT) is
invaluable not only to understand the sensory-motor functions
but also to translate brain signals into machine comprehensible
commands that can facilitate augmentative and alternative
communication using brain-computer interfaces (BCI). Recent
developments in sensor technologies, hardware computational
capabilities, and neural network models have significantly
helped advance biomedical signal processing research. This
study is an attempt to utilize state-of-the-art resources to
explore the relationship between human behavioral responses
during perceptual decision-making and corresponding brain
signals in the form of electroencephalograms (EEG). In this
paper, a generalized 3D convolutional neural network (CNN)
architecture is introduced to estimate RT for a simple visual
task using single-trial multi-channel EEG. Earlier comparable
studies have also employed a number of machine learning
and deep learning-based models, but none of them considered
inter-channel relationships while estimating RT. On the
contrary, the use of 3D convolutional layers enabled us to
consider the spatial relationship among adjacent channels
while simultaneously utilizing spectral information from
individual channels. Our model can predict RT with a root
mean square error of 91.5 ms and a correlation coefficient of
0.83. These results surpass all the previous results attained
from different studies.

Clinical relevance— Novel approaches to decode brain signals
can facilitate research on brain-computer interfaces (BCIs),
psychology, and neuroscience, enabling people to utilize assis-
tive devices by root-causing psychological or neuromuscular
disorders.

I. INTRODUCTION
Accurate prediction of human reaction time (RT) from

electroencephalogram (EEG) signals can facilitate brain-
computer interface (BCI) by providing meaningful infor-
mation of the underlying neurophysiological phenomena.
It can also help assess the performance of people with a
wide range of speech or motor impairments. These include
congenital impairments like autism and cerebral palsy, as
well as acquired conditions such as spinal muscular atrophy
(SMA) and amyotrophic lateral sclerosis (ALS) [1]. Besides
that, a precise prediction can help determine attention or
vigilance lapses, which is essential for critical tasks like air-
traffic control or long-haul driving [2]. EEG-based BCI has
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been pursued extensively, and recent advancements suggest
its potential in assisting, augmenting, or repairing human
cognitive or sensory-motor functions [3]. With an accurate
prediction of RT from EEG, the mental state can be more
accurately assessed, yielding a better BCI accuracy [4].
However, not many studies have been conducted yet to
estimate RT based on EEG.

One of the recent studies extracted Riemannian tangent
space features to estimate RT across 16 participants [5] with
a predicted root mean square error (RMSE) of 132.5 ms and
a correlation coefficient (CC) of 0.61. Another similar study
[6] used a rapid serial visual presentation-based experiment
involving six subjects and predicted RT with an average
RMSE of 119.5 ms. These studies portrayed subject-specific
prediction methods. In our previous works [7], [8], [9] we
created generalized models using machine learning and deep
learning-based techniques to solve this problem and achieved
a maximum CC 0f 0.80 and a minimum RMSE of 108.6 ms.
This study tried to go a step further, using a more meaningful
periodogram-based EEG data structure and developing a
novel 3D neural network architecture to predict RT.

II. METHODS

A. Experiment Details

We conducted a straightforward experiment on 31 male
and 17 female (ratio of 20:11) participants where multi-
channel EEG signals and corresponding response times were
recorded for a simple visual stimulus-based reaction task. In
a digital screen, a plus symbol (+) appeared in the midpoint,
and following a variable monitoring period, it transformed
into a cross (×). The participants were supposed to press the
space bar with the minimum delay possible as soon as they
observe the change in the symbol (+ to ×). This procedure
was repeated several times for all the subjects, and each of

Fig. 1. Thirty-channel electroencephalogram (EEG) scalp locations.
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the repetitions represented a single trial. The experiment’s
duration was 30-minutes for each of the 48 participants,
providing 320 trials (range: 219–442) per subject on average.
Noninvasive EEG data were recorded from 30 scalp locations
for each trial. EEG scalp locations are shown in figure 1.
All the participants possessed normal or corrected-to-normal
visions with no previous record of neurological problems.
The experiment was conducted with informed consent from
the subjects, and the Institutional Review Board of Arizona
State University approved all the procedures involved.

B. Data Preprocessing

The recorded EEG signals were sampled at a rate of
1 kilohertz. These recordings were then filtered from 0
to 400 Hz, preserving the useful information in the low-
frequency region and getting rid of the high-frequency noise.
To eliminate ocular artifacts, we first downsampled the data
to 250 Hz, and the customized data were then forwarded
to a GPU-optimized infomax independent component anal-
ysis procedure in EEGLAB. From the ICA, the ocular
components were identified by visual inspection. We back-
projected the remaining components to the original dataset
and obtained artifacts-free unfiltered data. Afterward, the
data were normalized by mean and variance. There were
starting and ending point indicators for each subject, and
between these two points, there were several trials. Each trial
consisted of the following sequential events:

1) beginning of the trial (emergence of +)
2) change of the symbol (+ to ×)
3) response of the subject (space bar press)
We used the EEG signals from all 30 channels recorded

between events 1 and 2 as the observation sequences. The
differences in time between events 2 and 3 were also
recorded as the corresponding RTs. In our experiment, only
2.6% of the RTs were over 1000 ms and so discarded as
exceptions. The final dataset was comprised of 15,324 trials
from all 48 subjects. The average RT over all the subjects
was around 400 ms [10], with 66% of RTs lying between
315-515 ms. As a large number of RTs were in the same
region, we needed to balance the dataset such that it had
a close to even distribution of RTs across the whole range.
We ended up with 6,000 trials out of 15,324 after balancing.
Then we randomized the dataset and split it into training and
testing sets. This was repeated until both sets had achieved
comparable mean, variance, and range of RTs. We tried
different training and testing ratios and settled for an 80:20
split, which provided us with low variance for both training
parameter estimates and testing performance statistics.

C. Periodogram

The periodogram has been proven to be an efficient yet
effective tool to represent a signal’s spectral characteristics
[11]. A periodogram is an estimation of a signal’s power
spectral density, which can be computed by taking the
Fourier transform of the signal’s autocorrelation function. As
the data is discrete in our case, the periodogram of discrete

signal x[n] can be calculated from the following equation:
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where S is the periodogram of x[n], k is the spectral-domain
ordinal, and n is the time-domain ordinal. N and T are
the sequence length and the sampling period, respectively.
In compliance with earlier findings, we isolated data from
delta to beta band (1–35 Hz) using a rectangular window
to be used as features. A total of 72 feature points were
obtained from each channel and trial, representing power at
72 frequency values between 1 and 35 Hz.

D. Data Restructuring

We restructured each of the single-trial, multi-channel
periodogram data-subset in a particular way to create a 3D
cuboid representation where both inter-channel and inter-
frequency relationships for the particular trial were pre-
served. In our 3D cuboid, each of the XY planes contained
the single-trial, single-frequency periodogram values from
all the channels. It was essential to store the periodogram
values in an order that reflects the corresponding channel
locations. To do so, we organized the periodogram values
from all 30 channels inside a 7x5 matrix considering the
relevant channel positions. There were 5 (7x5-30 = 5) empty
indices in the matrix, which were filled by computing the
averages of the neighboring values. Figure 2 (a) shows how
the 30 channel locations were restructured to create the
7x5 matrix. The empty indices are denoted by ’e’ in the
figure. Figure 2 (b) illustrates a symbolic representation of
the topographical plot containing periodogram values before
and after the transformation. On the other hand, the Z-axis
represents all 72 frequency values ranging from 1 to 35 Hz.
So, the XY plane preserved the inter-channel relationship,
and the Z-axis preserved the inter-frequency relationship.
After the transformation, we obtained a cuboid of dimension

Fig. 2. (a) Channel distributions and (b) corresponding topographical plots,
before and after the transformation
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Fig. 3. 3D CNN model architecture and data flow

72×7×5 for each trial. Considering all the trials, we obtained
a final dataset of dimension 72×7×5×6,000.

E. Model Architecture

In light of prior studies [9], [12], [13], we designed a
simple 3D convolutional neural network (CNN) to predict
RTs from the cuboids computed earlier. The model consists
of 2 3D convolutional (Conv3D) layers and 3 fully connected
(FC) layers. We flattened (FLT) the output of the second
Conv3D layer to feed the first FC layer. In between these
layers, we inserted 4 rectified linear unit (ReLU) layers to
introduce non-linearity. Figure 3 shows the model.

1) 3D Convolutional Layers: Convolution operations pre-
serve and propagate complex inter-component information
of a given matrix at the cost of higher computational
requirements. As the computational capabilities of present
hardware devices are observing tremendous growth, convo-
lutional layers are incorporated more often in neural network
architectures designed for a number of applications along
with biomedical signal processing. A 3D convolutional layer
performs the following operation using several randomly
initialized filters, optimized by back-propagation:

(h∗f)[x, y, z] =

m∑
i=−m

n∑
j=−n

l∑
k=−l

h[i, j, k]f [x−i, y−j, z−k]

(2)
where h is the filter, f is the input, and m,n,l are the finite
support sets.

We adopted 3D Convolutional layers in our study to
observe how much we can improve our model’s performance

Fig. 4. Sample 3D convolution operation

utilizing rich contextual information extracted from the 3D
input layers. Figure 4 shows a sample 3D filter layer per-
forming 3D convolution by moving across all 3 directions.
For our study, we used 2 Conv3D layers with the following
dimensions:

• Conv3D1: 12×3×3×20
• Conv3D2: 4×3×2×20
2) Fully Connected Layers: Fully Connected layers are

the layers where all the inputs from one layer are connected
to each of the activation units of the following layer. It per-
forms the affine transformation using matrix multiplication
followed by bias offset. The following equation shows the
fundamental operation undertaken by a fully connected layer:

Z = WT.X + b (3)

where X is an input matrix of size N × 1 and Z is the output
matrix of size M × 1. The transpose of a weight matrix W
of dimension N × M is first multiplied by the input matrix.
Furthermore, an M × 1 bias matrix b is also offset. All
the associated weight and bias values are optimized through
back-propagation, starting from random initialization. In this
model, we have 3 fully connected layers with the following
dimensions:

• FC1:
1) W1 = 1560 × 600
2) b1 = 600 × 1

• FC2:
1) W2 = 600 × 300
2) b2 = 300 × 1

• FC3:
1) W3 = 300 × 1
2) b3 = 1 × 1

3) Rectified Linear Unit Layers: ReLU is one type of
activation layer, and the main purpose of using this layer is to
introduce non-linearities in the linear outputs of a layer. It is
a very simple operation that is critical for the generalization
of the model. The function of the layer is as shown in the
following equation:

y = max(0, x) (4)

where x is the input value, and y is the output value.
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4) Loss Function: To train the model, we used a hybrid
loss function (LF) that maximizes the correlation coefficient
(CC) and minimizes the mean square error. The following
equation illustrates the loss function:

LF = (1−
∑n−1

i=0 (xi − x̄)(yi − ȳ)

nσxσy
)+

∑n−1
i=0 (xi − yi)2∑n−1

i=0 y
2
i

(5)

where n is the total number of predictions made. xi is the
predicted RT and yi is the actual RT for i ∈ [0, n−1]. x̄ and
ȳ are the means and σx and σy are the standard deviations of
predicted and actual RTs, respectively. To maximize CC, the
first part of the loss function minimizes (1-CC). The second
part minimizes the mean square error.

III. RESULTS

For this analysis, predictions higher than 1000ms were
clipped to 1000ms before computing the results. Using the
CNN model, we achieved an RMSE of 91.5 ms and a CC of
0.83. The actual vs. predicted RTs for the testing set using
our model are shown in figure 5. Also, a comparison of
obtained RMSE and CC values for RT estimation among
previous models [7], [8], [9] and the 3D CNN architecture
is shown in Table I. Clearly, the 3D CNN model exhibited
the best performance with improved results.

IV. DISCUSSION

This study has introduced a novel method of processing
multi-channel EEG signals to predict RT. One of the most
significant contributions of this work was the generation of
the 3D data structure comprising the spectro-spatial EEG

Fig. 5. Actual vs. predicted RT for the 3D CNN model

TABLE I
REGRESSION-BASED ESTIMATION RESULTS FOR DIFFERENT MODELS

Algorithm CC RMSE (ms)
Linear Regression 0.56 158.7
Ridge Regression 0.56 157.6

Support Vector Regression (SVR) 0.60 136.7
Extra Tree Regression 0.73 114.4

Random Forest Regression 0.74 111.2
FCNN + Random Forest 0.78 110.4

CNN+ Random Forest 0.80 108.6
3D CNN 0.83 91.5

features. Single-trial RT was predicted from these EEG
features using a 3D CNN architecture containing two 3D
convolutional layers and 3 fully connected layers. The pro-
posed model utilized around 6,000 trials from 48 subjects
and performed better than all the methods from the previous
studies. We were able to predict RT with a CC of 0.83
and an RMSE of 91.5 ms. It is one of the few studies
where human RT was predicted using features from EEG in
sustained attention-based visual response tasks. We believe
our work will contribute to the further advancements of EEG-
based brain-computer interface design and help accurate as-
sessment of the mental states, which will benefit researchers
in the field of psychology and neuroscience. Moreover, such
a generalized model can help monitor people with all kinds
of neuromuscular disorders and help them in rehabilitation.
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