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Abstract— 3D reconstruction is an important area in com-
puter vision, which can be applied to assist in medical diagnosis.
Compared to observing 2D ultrasound images, 3D models are
more suitable for diagnostic interpretation. In this paper, we
describe an approach for 3D reconstruction of the carotid
artery utilizing ultrasound images from the transverse and
longitudinal views. We implement a human-computer interface
to ensure the accuracy of the segmentation results by involving
superpixels and ellipse fitting techniques. This approach is
expected to achieve better accuracy to assist diagnostics in the
future.

I. INTRODUCTION

Ultrasound diagnostic technology is widely utilized for
early clinical detection due to its innocuity. When ultrasound
waves come into the human body, it is reflected, refracted,
and absorbed by the human tissues. Doctors can distinguish
diseases by interpreting the features of ultrasound images.
3D reconstruction is pursued to improve the accuracy of a
diagnosis. Differing from observing ultrasound images, 3D
models can allow doctors to check details from different
point of views, which can help in making more informed
decisions. To achieve 3D reconstruction, the tasks can be
separated into two categories: image segmentation and 3D
modeling.

In the state-of-the-art, many segmentation methods have
been proposed. Otsu’s method [1] is a thresholding based
segmentation algorithm that divides grayscale images into
foreground and background by selecting a threshold. Otsu’s
method can automatically select the appropriate threshold [2]
according to the variance of the foreground and background.
The value of the inter-class variance [3] is proportional
to the difference between the foreground and background.
To optimize the segmentation results, filtering methods are
deployed to weaken the influence of noise in an image.
Kalman filtering [4] is a popular approach for reducing the
effect of noise. It is widely used for tracking and positioning
blood vessels [5] [6] in real time. In addition to Otsu’s
method, the Active Contour model [7] can also achieve image
segmentation. It utilizes curve evolution to detect the target
in a given image based on edge information. By minimizing
the energy function [8], the curve changes are initiated to
approach the target edge. The active models are improved in
[9] by introducing the ability to converge in concave regions
of a contour. After the segmentation, modeling methods are
applied for 3D reconstruction. To project 2D images into
3D, images from different point of views [10] are necessary.
In the state-of-the-art, 3D models are usually represented
in three ways: polygonal meshes, voxels (volumetric pixel)
and point clouds. Compared to voxels, point clouds can

express a 3D model with smaller grids, which does not
result in significant loss of detail. Compared to point clouds,
polygonal meshes need much less storage to display surface
information with similar visual detail.

To design a precise and efficient 3D reconstruction method
for a carotid artery, we implement a human-computer inter-
face to ensure the accuracy of the segmentation results. We
utilize superpixel and ellipse fitting techniques to optimize
the segmentation results so that the accuracy of the model
can be ensured. To demonstrate the modeling performance,
we generate results using both point clouds and polygonal
meshes.

II. METHODOLOGY

In this section, we separate the proposed approach into
four subsections. The first subsection introduces the image
pre-processing steps. The second subsection introduces the
segmentation approach. The third subsection introduces the
optimization step by utilizing superpixel and ellipse fitting.
The final subsection introduces the modeling step. The
pipeline of the proposed method can be seen in Fig.1.

A. Image pre-processing

Considering the poor quality of ultrasound images, we
first implement image pre-processing methods. This way,
we can avoid noise impacting segmentation results. For
image pre-processing, we involve median filter, histogram
equalization, Gaussian filter, dilation, and erosion techniques.
In ultrasound images, we can clearly notice different types
of noise, such as Gaussian noise and salt and pepper noise,
which can significantly reduce image quality. To remove
the mixed noise, we apply a double-filtering algorithm to
remove the noise before and after histogram equalization.
We first implement the median filter [11] to coarsely reduce
noise. After this noise removal, the Gaussian noise can been
effectively controlled. Noise reduction can help the target
object stand out in ultrasound images. As shown in Fig.1,
Gaussian noise is removed from the ultrasound image; but,
the salt and pepper noise can still be observed.

To further improve image quality, we apply histogram
equalization [12] to make the details of the ultrasound image
clearer so that the remaining noise can be easily identified.
After the histogram is normalized, the outline of the carotid
artery cross-section becomes easier to recognize. From Fig.1
we can see that the salt and pepper noise has become
more obvious. To remove the noise shown in the histogram
equalization results, we apply a Gaussian filter [13]. Gaussian
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Fig. 1. Pipeline of the proposed method.

blur can smooth an image and highlight the target object. A
two-dimensional Gaussian function is represented as:

h(x, y) = e−
x2+y2

2σ2 (1)

In this equation, (x, y) represents point coordinates, which
can be considered as integers in image processing; σ is
the standard deviation. To obtain a Gaussian filter template,
the Gaussian function can be discretized, and the resulting
value of the Gaussian function used as the coefficient of the
template. The size of the template is set to (2k+1)(2k+1).
The formula to compute the value of each element in the
template is given by:

Hi,j =
1

2πσ2
e−

(i−k−1)2+(j−k−1)2

2σ2 (2)

After blurring, the salt and pepper noise appearing at the bot-
tom of the image are partially removed. Also, the transverse
and longitudinal sections of the carotid artery have a better
separation from the background.

In addition to the above double-filtering algorithm, we also
applied erosion and dilation to remove the salt and pepper
noise in the binary image. Erosion and dilation can help
retain the details of target objects and remove unnecessary
noise. After erosion and dilation, the main body is further
highlighted. Because we only need to keep the cross-section
of the carotid artery for ellipse fitting, our final task is to
extract objects from a binary image by size, and suppress
unimportant structures connected to image borders.

B. Segmentation

After the pre-processing, we implement Otsu’s method to
achieve a coarse segmentation. Following Otsu’s method,

superpixel and ellipse fitting techniques are applied to op-
timize the segmentation result. Otsu’s method obtains the
segmentation threshold according to the equations below.

N0 +N1 =M ∗N (3)

µ = ω0 ∗ µ0 + ω1 ∗ µ1 (4)

g = ω0ω1(µ0− µ1)2. (5)

This is the traversal method to obtain the threshold that
maximizes the between-class variance g, which is required
for Otsu’s method.

After implementing Otsu’s method, we also apply the
bwboundaries function to obtain the contours of target
objects in a binary graph, including external contours and in-
ternal edges. In a binary image, the object must be composed
of non-zero pixels, with 0 representing the background. B is
a P×1 cell array, where P represents the number of objects.
Each cell is a Q×2 matrix corresponding to the coordinates
of the contour pixels of the object, where Q represents the
number of the contour pixels. Each row in the Q×2 matrix
represents the position coordinates of the boundary pixels
of the connected body. After applying the bwboundaries
function [14], we can find the connected domain of the
image, which is the region we need to extract.

Based on the previous segmentation results, we use the
superpixel technique to improve segmentation accuracy. The
superpixel technique can group pixels into blocks based on
the intensity information of neighbours. According to the
number of foreground pixels appearing in each block, we
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Fig. 2. Comparison of the fitting results of different segmentation methods.

can mark each superpixel block as foreground or background.
This way, the coarse segmentation results can be optimized.
In our segmentation process, superpixels are mainly used to
segment the longitudinal section of the carotid artery. We
also use the SLIC algorithm [15] for auxiliary segmentation.
This algorithm can partition a picture by color. After par-
titioning, we use manual interaction to select the required
area, and then extract the longitudinal section of the carotid
artery. After extracting the longitudinal section of the carotid
artery from the super-pixel image, the method compares the
longitudinal section obtained by Otsu’s method, and then
correct the segmentation results.

C. Ellipse fitting

The cross section of the carotid artery is usually round.
Traditional segmentation methods do not identify precise
circles. Thus, we use an ellipse fitting method to fit the
cross-sectional shape of the carotid artery to achieve a
better segmentation effect. The fitting method uses the conic
equation. The equation of an ellipse is:

x2 +Axy +By2 + Cx+Dy + E = 0 (6)

This equation measures points on the ellipse contour. To find
the best matching ellipse, we need to minimize F according
to the principle of least squares. The equations for this are:

∂F

∂A
=
∂F

∂B
=
∂F

∂C
=
∂F

∂D
=
∂F

∂E
= 0 (7)

D =


x21 x1y1 y21 x1 y1 1
...

...
...

...
...

...
x2i xiyi y2i xi yi 1
...

...
...

...
...

...
x2N xNyN y2N xN yN 1

 (8)

To fit an ellipse the following five parameters need to be cal-
culated: position parameters (θ, x0, y0) and shape parameters
(a, b).

D. 3D modeling

After obtaining the fitted ellipse for the carotid artery,
we can use the ellipse equation to perform polynomial
fitting, and then generate a visual point cloud of the carotid
artery. Since point clouds lack neighborhood and topology

Fig. 3. Comparison of results of different segmentation methods.

information, it is not easy to generate the surface directly. We
use Delaunay-based methods [16] to convert the point cloud
into a mesh. The 3D reconstruction methods are based on
scattered point clouds [17]. The main idea of this method
is to explore the possible neighbors of all sample points in
all directions from scattered point data. Thus, we need to
triangulate [16] the point cloud data, and then extract the
triangles related to the geometric shape. To achieve this goal,
we utilize the Crust algorithm [18] proposed by Amenta.
Let S represent the set of sample points of a smooth curve
in a two-dimensional space. Then, the Crust algorithm can
compute the Voronoi diagram of S. Following this, we can
get a set of poles represented by P . For each sample point
s, if s is not in the convex hull of S, p+ is the farthest
point of the Voronoi diagram corresponding to S. If s is in
the convex hull of S, then p+ is designated as a point at
infinity outside the convex hull. Consider the outer vector
along sp+ at s. If there is a point p in the Voronoi diagram
of the point set S, which satisfies ∠p+sp greater than π /2,
and is farther from other vertices s, then p is regarded as
another pole sp+. By calculating the Delaunay triangulation
of S

⋃
P and keeping triangles for which all vertices are

sample points, we can obtain a linear surface.

III. EXPERIMENTS

A. OTSU Threshold

In general, Otsu’s method traverses all pixels from in-
tensity 0 to 255 for gray scale images. For a gray scale
image with two peaks in the histogram, the value of T
obtained by Otsu’s method is approximately equal to the
trough between the two peaks. The calculated threshold must
be between the two peaks. By observing the image of the
carotid artery, we find that the histograms of ultrasound
images are single peaked, where the threshold T should
be around the peak. To calculate the threshold, we only
consider existing intensity range. As shown in Fig.4, we
only take intensity range (0,230) into consideration when
Otsu traverses the pixels. The intensity range with few
pixels is ignored during the traversal. Thus, only the inter-
class variance between the modified intensity range areas is
calculated. This reduces some unnecessary calculations, and
increases the computational efficiency by 37 percent.
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Fig. 4. The histogram of an ultrasound image is usually single-peaked, and
a colored image is usually multi-peaked. Otsu’s method can be simplified
based on this observation to improve efficiency.

Fig. 5. Point clouds from various perspectives.

Fig. 6. Mesh from various perspectives.

B. Segmentation and Modeling Results

Ultrasound images contain unclear edges and mixed noise.
Thus, the segmentation result of the traditional Otsu’s
method expands the segmentation range and makes the seg-
mentation results inaccurate. Helped by the pre-processing
strategy, the accuracy of ellipse fitting can be significantly
improved. This improvement can be seen in Fig.3. By
utilizing the superpixel method, the overall segmentation
effect can be improved by selecting the longitudinal-section

of the carotid artery in the superpixel area. The improvement
achieved by superpixels can be seen in Fig.2. The superpixel
method can effectively reduce the segmentation range of
Otsu’s method. The final 3D modeling results can be seen
in Fig.5 and Fig.6, where Fig.5 represents the point cloud
model and Fig.6 represents the mesh model.

IV. CONCLUSION

We proposed a high-precision 3D reconstruction method
for the carotid artery. Utilizing ultrasound images of the
cross section and the longitudinal section, we successfully
built the point cloud and mesh models of the carotid artery.
We applied a double filtering strategy to achieve noise
removal from ultrasound images. Following Otsu’s method,
we creatively utilized superpixel and ellipse fitting techniques
to optimize the segmentation results. The proposed approach
is expected to have better accuracy and assist in diagnostics
in the future.
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