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Abstract— In this paper, we aimed to develop a method for
the automatic recognition of individual finger-tapping motion.
Biodegradable piezoelectric film sensors were attached to the
skin of a forearm near the wrist (16 channels) to measure
small movements of the tendons during five-finger tapping. In
the proposed method, the segments in which motion occurred
were detected by calculating the total activity for all channels.
A neural network is trained to classify tapping motion using
the extracted data based on the total activity, thereby allowing
the accurate classification of flexion/extension of each finger.
We collected experimental data from five healthy young adults
to verify the motion recognition accuracy of the proposed
method. The results revealed that the proposed method can
recognize five-finger tapping motions with high accuracy (flex-
ion/extension of each finger: 92.0%; time-series tapping motion:
88.4%).

I. INTRODUCTION

The miniaturization of computers has facilitated the de-
velopment of wearable devices that can easily be attached
to the human body. In recent years, the market for devices
such as smartwatches and smartglasses has expanded rapidly;
however, as devices become smaller, device operability may
be reduced. For example, it is difficult to input text on
smartwatches because of their small displays. Voice input is
an alternative; however, it tends to be difficult to use voice-
based interfaces in public places such as on trains and buses.
To solve these problems, human-machine interfaces (HMIs)
have been developed to enable direct text input from body
movements.

One such system was developed by training a convo-
lutional neural network with hand images captured by a
camera attached to the wrist to recognize gestures and
tapping motion [1], [2], although the system could not be
continuously worn on the wrist because of the device’s large
size. An alternative approach using electromyogram (EMG)
has been used to recognize gestures [3] or to input text [4];
however, because EMG is susceptible to changes in signal
characteristics due to muscle fatigue and sweat, EMG is not
suitable for long-term use.

Polymeric piezoelectric materials are highly applicable to
HMIs because of their thinness, ease of fabrication, high
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flexibility, and water resistance. In particular, biodegradable
piezoelectric film sensors that are made of polylactic acid
are well suited to the measurement of biological signals [5].
Therefore, with an HMI that uses biodegradable piezoelectric
film sensors, it may be possible to achieve high device
operability while retaining device wearability.

This paper proposes a method to recognize finger-tapping
motion, such as that used for keyboard input, utilizing
biodegradable piezoelectric film sensors attached to the wrist.
In this approach, small movements of the underlying tendons
are measured by 16 channels of piezoelectric film sensors.
The proposed method automatically detects tapping motions
based on the total activity of the entire channel and can
recognize tapping motions using a neural network.

II. TAPPING MOTION RECOGNITION USING
PIEZOELECTRIC FILM SENSORS

An overview of the finger-tapping motion recognition
method is shown in Fig. 1. Piezoelectric film sensors are
used to capture the movement of tendons underlying the
skin at the wrist, and a data logger was used to store the
signals. Signals are filtered and normalized, then combined to
calculate total activity. Segments during which finger tapping
occurred are detected using a total activity threshold, and the
finger motions are classified by machine learning.

A. Biodegradable Piezoelectric Film Sensor

The biodegradable piezoelectric film sensors (Picoleaf;
Murata Manufacturing Co., Ltd.), made of polylactic acid,
were attached to the skin of the wrist. This piezoelectric
sensor is less affected by body temperature because it is
nonpyroelectric; therefore, any charge is produced entirely
by strain in the material, allowing more accurate measure-
ment [5]. In addition, it is highly sensitive enough to can
detect small changes in strain and flexible enough to can be
attached to the contours of the human body; hence, it has the
advantage of being able to detect bending and twisting [6].
Because of these characteristics, biodegradable piezoelectric
is useful for biological applications such as measuring small
displacement changes of the skin that are caused by the
movement of underlying tendons.

B. Signal Measurement

Eight 20 mm × 3 mm sensors, placed at 2 mm intervals
and covered with silicone (Ecoflex 00–30; Smooth-On Inc.),
were attached to each of the palmar and dorsal sides of
the right wrist (Fig. 2). The tendons of the fingers are
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Fig. 1. Overview of the finger-tapping motion recognition method
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Fig. 2. Signal measurement unit. (a) Placement on the right
wrist. (b) Cross-sectional diagram of the right wrist with the
piezoelectric sensors attached on the skin.

distributed near the surface, running along the palmar and
dorsal forearms to the wrist [7], and each tendon moves
to produces a movement in the corresponding finger. The
system can capture finger motions by measuring such a
movement of tendons at the wrist from the skin surface.
The signal obtained from each channel is amplified (× 54),
converted from analog to digital (16-bit resolution) by two
data loggers (wireless 8-channel logger; Logical Products,
Inc.) and saved to a PC (sampling frequency fs (Hz)).

C. Preprocessing

Preprocessing is performed on each channel prior to calcu-
lating the total activity, which represents motion magnitude.
The DC component is removed from each measured signal
by subtracting the average value of the full time series.
The signal is then filtered by a digital N th-order low-pass
Butterworth filter (cutoff frequency: fc (Hz)) to extract the
low-frequency components related to the displacement of the
skin surface involved in tendon movements. Each signal xl(t)
(l = 1, 2, · · · , L; L is the number of channels) at time t is
normalized as

yl(t) =
xl(t)− µl

σl
, (1)

where µl and σl are the mean and standard deviation,
respectively, of each channel.

To classify movement as that of a specific finger motion
from the set of signals, it is necessary to detect when the
tapping motion occurs. We create a radar chart by radially
arranging the absolute values of yl(t), and an area of this
radar chart is calculated and defined as the total activity s(t):

s(t) =
1

2
sin

2π

L

∣∣∣∑L
l=1 yl(t)yl+1(t)

∣∣∣ , (2)

where yL+1(t) = y1(t). During tapping, the larger value of
the total activity s(t) because the internal area of the radar
chart expands. This total activity is used to determine when
the tapping motion occurs.

D. Motion Recognition

In the proposed method, each finger’s flexion and exten-
sion are defined as two different classes, and a neural network
is used to classify tapping motions with the normalized
signals yl(t) as input.

1) Training data creation: To classify each motion accu-
rately, it is necessary to correctly extract a series of yl(t)
during the tapping motion from the measured data, and
use it as training data for the neural network. Therefore,
training data for the neural network are created; segments in
which the tapping motion occurred are extracted by fitting a
Gaussian function to the total activity s(t).

In the interval [t1, t2] containing a single tapping motion,
the time-series waveform s(t) has two peaks corresponding
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Fig. 3. Signal segmentation based on ω where the total
activity s(t) during a single tapping motion. The first and
second peaks correspond to the finger flexion and extensions,
respectively. The orange lines indicate the motion segments
extracted using the Gaussian function fitting.

to finger flexion and extension, respectively. A function
consisting of the sum of the two Gaussian functions,

R(s(t)) = afexp

[
− (s(t)−cf)2

2d2f

]
+ aeexp

[
− (s(t)−ce)2

2d2e

]
(t1 ≤ t ≤ t2),

(3)

is fitted to the total activity segments using the least-
squares method, and ai, ci, and di are respectively the peak
amplitude, location, and spread of each Gaussian function,
and i ∈ {f, e} is the indicator variable that specifies the
flexion and extension. We define the range of ±ωdi around
each peak ci as the segments of finger flexion [t(1)f , t(2)f ]
and extension [t

(1)
e , t

(2)
e ] intervals (Fig. 3). The normalized

signals yl(t) corresponding to these motion segments are
extracted and used as training data for the neural network
pattern classifier to learn the characteristics of the flexion
and extension of the tapping motions.

The above procedure is performed for all tapping move-
ments, and we created a total of J training data sets. Each set
of training data contained at least one flexion and extension
movement for each finger.

2) Time-series tapping recognition: To classify specific
tapping motions in time-series data, the normalized signal
yl(t) is used as input to a multilayer perceptron neural
network, and the class with the maximum prediction score
is determined as the classified motion. Here, to prevent
misclassifications due to small noises generated at rest and
unpredictable noises such as body movements, we define the
threshold sth(t) based on the total activity s(t) as

sth(t) = k(s(t) + s̄th), (4)

s̄th =
1

J

J∑
j=1

s
(j)
min, (5)

where k is an arbitrary gain and s(j)min is the minimum value
of s(t(1)i ) in j-th dataset (j = 1, 2, · · · , J). The classification
is only performed when s(t) is satisfied s(t) ≥ sth(t). Here,
this conditional expression can be reduced to the following

condition:
s(t) > κs̄th, (6)

where
κ =

k

1− k
, (7)

and accordingly, 0 ≤ k < 1.
Network outputs may involve instantaneous misclassifi-

cation as a result of artifacts that will eventually affect the
stability of classification. Therefore, to mitigate these effects,
at a given time t, the classification result is adopted if the
network outputs during the segment [t − p, t] are the same
label.

Although for each finger the neural network classi-
fies movement into two separate classes—flexion and
extension—, the flexion and extension of each finger should
be performed in a set when inputting text on a keyboard.
Therefore, the tapping motion is only recognized when
flexion and extension movements of the same finger are
classified consecutively. This condition reduces the influence
of instantaneous misclassification and enables stable outputs
for the recognition of tapping motion.

III. EXPERIMENTS

To verify the effectiveness of the proposed method, exper-
iments were conducted on five healthy young adults (males,
right-handed, age range: 23–25 years). Study procedures
were carried out in accordance with the Declaration of
Helsinki. Informed consent was obtained from all subjects
before the experiments were performed, and the study was
approved by the Hiroshima University Ethics Committee
(Registration number: E-840). A total of 16 channels were
captured from biodegradable piezoelectric film sensors at-
tached on the dorsal side (channels 1–8) and the palmar
side (channels 9–16) of the right wrist of each subject.
The sampling frequency was set to fs = 200 Hz, and the
order and cutoff frequency of the low-pass filter were set to
N = 12 and fc = 10 Hz, respectively. The number of hidden
layers in the neural network was set to one, and the number
of units in the hidden layer was set to 16. The parameter ω,
which determines the range of waveform extraction during
neural network training, was set to 0.5 based on the results
of a pilot experiment. The threshold multiplier k was set to
0.5.

Subjects were asked to sit and place their right hand
comfortably on a desk. We showed the subjects a video
that demonstrated the timing of the tapping and had them
perform a task in which they tapped each of their five fingers
once in random order; each subject performed ten trials of
the task. The interval between each tap was set to 1 s, and
the measurement time per trial was set to 30 s. Subjects
were instructed to keep their wrists on the desk during the
trials. The position where all fingertips were raised was set
as the neutral position, and the tapping was defined as the
movement of finger flexion to touch the desk followed by
finger extension to return to the neutral position.

First, we examined classification accuracy for the flexion
and extension of each finger. The 10 target classes were
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Fig. 4. Results of time-series recognition of tapping motions.
From the top, normalized signals (Ch. 1–8: dorsal, Ch. 9–
16: palmar side), the total activity of all channels s(t), time-
series prediction of flexion/extension, and recognized tapping
motions are shown. Note that NM represents the no motion.

flexion and extension each of the thumb (Ti), index finger
(Ii), middle finger (Mi), ring finger (Ri), and little finger
(Li), where i ∈ {f, e}. Five out of ten trials for each subject
were used as training data (trials 1–5), and the remaining five
trials (trials 6–10) were used for accuracy verification. For all
combinations of trials, the average classification accuracies
were calculated. Note that we extracted the interval data
from the motion segments in advance and used them for
classification.

Next, to confirm the applicability of our method for text
input tasks, we verified the recognition accuracy of each
specific tapping movements on time-series data: T̂, thumb; Î,
index; M̂, middle; R̂, ring; and L̂, little. In this verification,
the training data (trial 1–5th) were extracted from the motion
segments in advance, and the test data (trial 6–10th) were
time-series data including the resting periods.

As an evaluation measure for time-series recognition,
we calculated the tapping recognition accuracy based on
character recognition accuracy [8], 1− (Nerr/Ntotal), where
Nerr is the total number of misrecognized tapping (the sum
of the number of replacements, insertions, and deletions) and
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Fig. 5. Results of classification accuracy for the five-finger
motions of flexion and extension. (a) Average classification
accuracy. The green bars are average accuracy of Sub. 1–5
and the orange bar is the average over all subjects. The error
bar in the average represents the 95% confidence interval for
all subjects. (b) Average confusion matrix.

Ntotal is the total number of taps. With this scale, we can
quantitatively evaluate whether the system can recognize the
tapping movements in the correct order.

IV. RESULTS

Fig. 4 shows an example of the measurement and recogni-
tion results of subject 1. From the top, the normalized signals
yl(t), the total activity s(t) with the threshold sth(t), the
predicted results of flexion/extension of each finger, and the
recognized movement are presented. Note that the vertical
black line in the figure represents the start time of each tap
presented to the subject, and the actual time when the subject
performed the tapping motion was approximately 0.1–0.5 s
later than this line. In this example, the tapping order was
ring finger, thumb, index finger, middle finger, and little
finger.

Fig. 5(a) shows the average classification accuracy over
verification trials for each subject. The average classification
accuracy over all subjects is also shown. All subjects had
classification accuracies greater than 80%, and the average
accuracy over all subjects was 92.0% (95% confidence
interval [CI]: 83.4–100.0). Fig. 5(b) shows the confusion
matrix for the average classification accuracy of all subjects.

Fig. 6 shows the tapping recognition accuracy for the time
series data. The average recognition accuracy for all subjects
was 88.4% (95% CI: 76.3–100.0).
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Fig. 6. Tapping recognition accuracy for the time-series data
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V. DISCUSSION

Piezoelectric sensors attached to the wrist captured wave-
forms with different characteristics for each tapping move-
ment (Fig. 4). In particular, dorsal channels represented
thumb and little-finger tapping, palmar channels represented
middle-finger and ring-finger tapping, and the entire channel
represented index-finger tapping. Two peaks corresponding
to flexion and extension were observed in the total activity
s(t) after the start time of the tapping motion of each finger;
therefore, we can conclude that the method can detect the
tendon movements corresponding to each finger’s tapping.

The overall classification accuracy for tapping motion
was high, greater than 90% on average (Fig. 5(a)). This
indicates that the neural network could correctly learn the
characteristics of the flexion and extension of each finger and
that the proposed method could accurately extract intervals
with motion for the training of the classifier. The overall
accuracies for the index finger and the thumb were relatively
high, while those for the middle, ring, and little fingers
tended to be low. Anatomically, the thumb and index finger
are independent, whereas the middle, ring, and little fingers
are difficult to move completely independently [9]. This
difference in the independence of each finger may have
affected the classification accuracy. If a model considering
finger dependency could be introduced into the classifier, the
classification accuracy of the middle, ring, and little fingers
may be improved.

For time-series recognition of each finger tapping motion,
the average accuracy reached higher than 88% (Fig. 6),
which suggests that the proposed method is effective even
in situations where virtual keyboard interface is assumed.
Although recognition accuracies for some subjects were rel-
atively low, they can be expected to improve with sufficient
training. The piezoelectric film sensor that was used is thin,
flexible, lightweight, and less susceptible to the effects of
muscle fatigue and sweat than EMG sensors; therefore, an
HMI based on our method has the potential for application in
practical wearable devices. However, there were some cases
in which the tapping recognition accuracy was reduced by
incorrect classification, most likely as a result of transient
signals. This may be improved by optimizing the threshold
for motion determination and using time-series classification

models.

VI. CONCLUSIONS

This paper proposed a novel method for finger-tapping
motion recognition that uses biodegradable piezoelectric film
sensors to detect finger motions from the skin at the wrist,
which is used as input to a neural network to recognize
tapping motion. The experiments with five subjects demon-
strated that the proposed method can accurately recognize
tapping motion, suggesting its applicability for virtual key-
board interfaces.

In the future, we would like to adapt our method to
interfaces in actual online environments. In addition, we
will verify classification accuracy when tapping position
and speed vary and when unknown subjects are used for
recognition.
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