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Abstract— Deep learning methods, and in particular
Convolutional Neural Networks (CNNs), have shown
breakthrough performance in a wide variety of classification
applications, including electroencephalogram-based Brain
Computer Interfaces (BCIs). Despite the advances in the field,
BCIs are still far from the subject-independent decoding of
brain activities, primarily due to substantial inter-subject
variability. In this study, we examine the potential application of
an ensemble CNN classifier to integrate the capabilities of CNN
architectures and ensemble learning for decoding EEG signals
collected in motor imagery experiments. The results prove
the superiority of the proposed ensemble CNN in comparison
with the average base CNN classifiers, with an improvement
up to 9% in classification accuracy depending on the test
subject. The results also show improvement with respect to the
performance of a number of state-of-the-art methods that have
been previously used for subject-independent classification in
the same datasets used here (i.e., BCI Competition IV 2A and
2B datasets).

I. INTRODUCTION

Brain-Computer Interface (BCI) aims to establish a ro-
bust channel between user and device, bypassing normal
neuromuscular pathways by interpreting the user’s brain
activity patterns and decoding them into useful commands
for external machine/computer control [1], [2], [3].

One of the most commonly used brain signal acquisi-
tion methods is by electroencephalogram (EEG) recordings
[4]. As a non-invasive data collection method, the EEG
is estimated to measure only around 5 % of the original
electrical brain activities. At the same time, the remaining
95 % are attenuated and smoothed by multiple layers such as
the skull and tissues, or obscured by background activities
[4], [5]. The issues associated with such a low signal-to-
noise ratio are further amplified by extreme variability in the
signal patterns across various subjects. As a result, most of
the available BCIs apply subject-specific (subject-dependent)
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training, which requires the user to spend time on the
training/calibration, so that the subject’s data could be used
to adapt the system for future use [6], [7]. This procedure
is time-consuming and especially inconvenient for people
with disabilities. Therefore, recent research attempts to move
towards calibration-free (subject-independent) systems [8].

In this paper, we investigate the capabilities of an ensemble
CNN in the context of subject-independent binary classifica-
tion of motor imagery (MI) tasks. MI, which is the process
of imagining the movement of specific parts of the body,
is an endogenous process (i.e. stimuli independent), which
uses the sensory-motor rhythms (SMRs, i.e. changes in the
oscillatory activity) to control the BCI device [9], [10]. Gen-
erally, measuring the brain’s biometric information allows to
reflect active and passive mental states of the subjects and
recognize their psychological and physical status. In case
of MI-based BCI, event-related synchronization (ERS) and
event-related desynchronization (ERD) patterns elicited in
SMRs are measured [11], [12]. These patterns are believed
to be responsible for the changes in the energy levels in the
contralateral/ipsilateral areas, due to certain MI tasks.

An overview of the existing predictive models in the area
of BCI suggests that deep learning algorithms outperform
traditional machine learning methods in EEG classification
[13], [14]. In particular, Convolutional Neural Networks
(CNNs) have demonstrated their high potential in decoding
complex ERD/ERS patterns in various BCI applications with
efficient training time [13], [14], [15], [16], [17]. In some
research CNN has been used as a classifier that is trained on
the pre-processed features fed from Common Spatial Pattern
(CSP) [18] or Short-Time Fourier Transform (STFT) [19],
while others take advantage of CNN efficiency in terms of
capturing latent features from raw EEG [16], [17], [20].
CNNs are able to learn from raw data by first extracting
the local low-level features from the input and then learn
global high-level features in the deeper layers [20].

The advantages of CNN could be enhanced by integrating
several CNN architectures into a single predictive model via
ensemble method as it has potential to deal with variability
of the data [23]. The summary of the studies exploring
the performance of various ensemble models towards MI
application is presented in Table I. Accordingly, most prior
research in this area use the traditional machine learning
methods, such as Support Vector Machine (SVM) [23],
Linear Discriminant Analysis (LDA), K Nearest Neighbor
(KNN), decision trees [21], [22], [24], [25], [26] and rarely
take the advantage of deep learning architectures [27], [28].
Therefore, in this study in order to cope with substantial
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TABLE I
SUMMARY OF PREVIOUS RESEARCH EXPLORING THE ENSEMBLES FOR THE MOTOR IMAGERY TASKS

Study Base classifiers Type of ensemble
[21] SVM Dynamic Weighted Ensemble classification
[22] SVM, LDA, Decision Tree Bagging, Stacking
[23] LDA, Artificial Neural Network Stacked Ensembles
[24] Decision Stump, KNN Boosting, Bagging
[25] LDA, SVM, Radial Basis Function, KNN Stacking
[26] SVM, Adaptive boost, Logitboost Boosting, Bagging
[27] Artificial Neural Network Simple Averaging, Stacked Generalization
[28] Feed Forward Neural Network Adaboost, LPBoost, RUSBoost, Bagging, Random Subspace

TABLE II
NUMBER OF OBSERVATIONS USED AS A TRAINING/VALIDATION/TESTING SET FOR EACH ENSEMBLE METHOD TO ESTABLISH BASE CLASSIFIERS

Dataset Original number of
trials per subject

Number of trials
after segmentation

Number of trials
in training set

Validation set/Test set

2A 288 864 6048 864
2B 680, 720, 740, 760 2040, 2160, 2220, 2280 14280, 15120, 15540,15960 2040, 2160, 2220, 2280

Fig. 1. LOSO-TM method for base classifiers training: leave out one subject with remaining subjects being held-out one at a time to create the validation
set such that the training is performed on remaining 7 subjects

inter-subject variability in constructing accurate subject-
independent classifiers, we develop an ensemble of CNN
classifiers trained on data collected from multiple subjects
excluding the test subject. The proposed multi-subject ensem-
ble CNN is a promising tool as it achieves good performance
in subject-independent classification, which is per se an
indicator of robustness to the inter-subject variability.

The remainder of the paper is structured as follows.
Section II reviews the description of the datasets used in
this study. Section III describes ensemble learning, training
base classifiers for an ensemble, and the systematic model
selection strategy used in this study. Results and discussion
are presented in Section IV. Section V concludes the paper.

II. DATASETS

This study uses two publicly available MI datasets: BCI
Competition IV 2A [29] and BCI Competition IV 2B [30].
These datasets were collected under different experimental
conditions that include several types of motor imagery tasks.
For the current study, only those limb imagery data corre-
sponding to left-hand and right-hand imagery were selected.
The brief description of these datasets is presented below.

1) BCI Competition IV 2A (BCI IV 2A): Nine subjects
participated in the cue-based BCI experiment performing
four types of imagery tasks (imagination of left-hand, right-
hand, both feet, and tongue movement). The data were
obtained using 22 Ag/AgCl electrodes according to the 10-
20 electrode placement system, with the reference electrode
being set to the left mastoid, while the ground was set to the
right mastoid. The sampling frequency was 250 Hz and band-
pass filtering range is 0.5 Hz-100 Hz. More details could be
found in [29].

2) BCI Competition IV 2B (BCI IV 2B): This dataset
contains EEG from nine healthy, right-handed subjects. Dur-
ing the experiment, the subjects performed two-class motor
imagery of the left-hand and right-hand movements. The data
were collected at a sampling frequency of 250 Hz with three
channels (C3, Cz, and C4), while electrode Fz was used
as the EEG ground (reference lead). The frequency range
0.5 Hz-100 Hz was used for bandpass filtering (see [30] for
more details).

For both of the datasets we segmented original trials of
4 seconds duration into a series of shorter segments of 2
second with an overlap of 50%. This was done with the
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aim of increasing the sample size, as with small number of
training samples, deep neural networks, such as the CNN,
are prone to over-fitting.

III. MULTI-SUBJECT ENSEMBLE CNN

A. Ensemble Technique

Ensemble learning integrates several predictive and possi-
bly unstable models to reduce their variance and to improve
the overall predictive performance. An ensemble classifier
ψE(x) is given by

ψE(x) = C

(
M⋃
i=1

{ψi(x)}

)
(1)

where ψi(·), i = 1, . . . ,M denotes the set of M base
classifiers, C(·) is the combination rule, and x denotes the
p-dimensional feature vector to be classified. In the present
study, to design an ensemble we combine several CNN
architectures that are trained on multiple subjects and are
outcomes of a systematic model selection process. The voting
mechanisms (combination rules, or combiners) used to form
the ensemble include majority vote (MV) and probabilistic
classifier ensemble weighting (PCEW) [31].

Using the MV rule, ψE(x) is determined based on the
decision of the majority of the base classifiers [31], such
that

ψE(x) = argmax
y∈{0,1}

M∑
i=1

I{ψi(x)=y} , (2)

where I{S} is 1 if statement S is true, and zero otherwise
[31].

PCEW first calculates the probabilities of class y ∈ {0, 1}
given feature vector x and base classifier i ∈ {1, ...,M}.
These probabilities, denoted as p̂iy , are then weighted by
the estimated accuracies of individual classifiers ( ˆacci) raised
to the power of α, which shows the degree of trust to the
estimated accuracies. Finally, x is classified to the class with
the highest weighted sum of the probabilities p̂iy . Formally,
this combination rule is presented as

ψE(x) = argmax
y∈{0,1}

M∑
i=1

ˆaccαi p̂iy . (3)

B. Training the Base Classifiers

Let Si and S = ∪Ki=1Si denote the EEG data collected
from subject i, and from all K subjects, respectively (K =
9 for both BCI IV 2A and 2B datasets). To ensure the
subject-independent evaluation of the proposed design, we
apply the leave-one-subject-out cross-validation (LOSO-CV)
procedure, where the data for each subject Si is successively
held out and not seen during the training/model selection
process, and is used only to assess the performance of the
constructed ensemble classifier. In addition to this external
LOSO-CV, there is an internal LOSO-CV that is used for
model selection and training each ensemble classifier, which
is utilized to classify observations for the held-out subject
Si. The effect of the inner LOSO-CV is to simulate the
subject-independent context within the training data S − Si,

i.e., K − 1 subjects at a time, and estimate the best set
of hyperparameters to be used in training the CNN base
classifiers within the ensemble. That is to say, in order
to construct the ensemble classifier (III-A), K − 1 base
classifiers are constructed where each classifier is trained
using data for K − 2 subjects (S − Si − Sj , j 6= i) with
the hyperparameters being tuned using data for subject Sj ,
which is held out due to the internal LOSO-CV process.

Table II shows the number of observations available in two
datasets prior to and after segmentation, the number of trials
used during training, validation, and testing as described
before. Multiple numbers specified in some entries associated
with BCI IV 2B dataset indicate different number of trials
across subjects who participated in the BCI experiment.
Fig. 1 shows a schematic diagram of the entire process of
the internal LOSO for training and model selection (LOSO-
TM) as well as the subject-independent assessment via the
external LOSO.

C. Model Selection and Hyperparameter Tuning

Within the LOSO-TM process, we used a brute-force (ex-
haustive) search to perform model selection. In this regard,
similar to [16], [17], we first defined a limited space of
hyperparameters within which the exhaustive search was
conducted to tune the hyperparameters of the constructed
CNN base classifiers used in the ensemble learning. The fol-
lowing assumptions were made to define the possible search
space of hyperparameters: (i) assuming L ∈ {2, 3, . . . , 6}
denotes the total number of layers used in CNN architectures,
we considered both increasing and decreasing patterns for
the number of output channels across layers. In particular,
for j = 1, . . . , L, it was assumed that the number of output
channels in each layer is 22+j and 2(L+3−j) for an increasing
and decreasing pattern, respectively; (ii) kernel shapes of
size 3 × 8, 3 × 24, 3 × 40; (iii) the mini-batch gradient
decent with Adam optimizer [32] with a learning rate of
10−4 and decay of 10−5; (iv) a cross-entropy loss function
[33]; (v) a maximum number of epochs of 150, interrupted
by early stopping with a patience parameter of 30 [34];
(vi) RELU activation function in all layers; and (vii) the
last convolutional layer was followed by two fully-connected
layers with 256 and 2 output features, respectively. The
aforementioned structural and algorithmic hyperparameters
set the cardinality of hyperparameter space to 5 (number
of layers) × 2 (increasing or decreasing patterns of output
channels) × 3 (kernel size) × 150 (maximum number of
epochs) × 1 (learning rate) × 1 (decay factor) × 1 (batch
size) = 4500. Recall that due to the external LOSO used
for subject-independent assessment of the proposed ensemble
classification rule, K ensemble classifiers were constructed,
each composed of K−1 base CNN classifiers. As part of the
model selection conducted within the aforementioned space
of hyperparameters, each base classifier is the one (among
at most 4500 classifiers) that led to the highest estimated
accuracy on the corresponding validation set (i.e., the data for
the held-out subject as part of the internal LOSO described
in Section III-B).
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TABLE III
TEST ACCURACY RESULTS FOR DIFFERENT ENSEMBLING SCHEMES USING DATA FROM BCI IV 2A DATASET. THE COLUMNS LABELED

“MINIMUM”, “MAXIMUM”, AND “AVERAGE” SHOW THE MINIMUM, MAXIMUM, AND AVERAGE ACCURACY OF 8 CONSTRUCTED BASE CLASSIFIERS

ON THE DATA FOR THE TEST SUBJECT (I.E., THE SUBJECT WHO IS UNSEEN DURING THE TRAINING)

Test
subject

Minimum %
(Base

Classifiers)

Maximum %
(Base

Classifiers)

Average %
(Base

Classifiers)
MV % PCEW %

(α = 1)
PCEW %
(α = 5)

1 63.31 70.72 66.35 70.60 71.87 72.22
2 48.26 53.70 51.46 53.00 52.78 53.12
3 64.93 77.31 71.08 78.82 77.89 76.16
4 54.40 64.58 58.75 59.61 60.76 60.65
5 52.08 56.71 54.01 56.02 56.48 54.86
6 55.21 62.50 58.93 59.26 60.30 60.07
7 53.36 61.80 58.09 61.57 61.34 60.42
8 66.78 74.07 69.69 76.85 76.16 77.43
9 58.56 66.43 62.50 61.69 61.46 62.6

avg±std 57.43±6.00 65.32±7.30 61.20±6.37 64.16±8.60 64.34±8.31 64.17±8.42

TABLE IV
TEST ACCURACY RESULTS FOR DIFFERENT ENSEMBLING SCHEMES USING DATA FROM BCI IV 2B DATASET. THE COLUMNS LABELED

“MINIMUM”, “MAXIMUM”, AND “AVERAGE” SHOW THE MINIMUM, MAXIMUM, AND AVERAGE ACCURACY OF 8 CONSTRUCTED BASE CLASSIFIERS

ON THE DATA FOR THE TEST SUBJECT (I.E., THE SUBJECT WHO IS UNSEEN DURING THE TRAINING)

Test
subject

Minimum %
(Base

Classifiers)

Maximum %
(Base

Classifiers)

Average %
(Base

Classifiers)
MV % PCEW %

(α = 1)
PCEW %
(α = 5)

1 59.63 65.00 62.39 64.17 65.00 64.58
2 52.11 55.34 53.49 53.87 54.26 54.61
3 52.31 54.91 53.69 54.12 53.84 53.70
4 77.25 81.89 80.41 83.29 82.61 82.79
5 57.88 64.46 62.53 63.96 65.81 64.37
6 63.56 70.55 67.77 71.06 71.02 70.14
7 61.25 66.85 64.37 65.74 65.83 66.02
8 66.80 72.41 70.45 70.53 71.84 71.23
9 65.51 70.32 68.09 69.77 70.79 70.51

avg±std 61.81±7.34 66.86±7.94 64.80±7.87 66.28±8.52 66.78±8.43 66.44±8.37

IV. RESULTS AND DISCUSSION

A. Results of the Proposed Method

This section presents the results of subject-independent
evaluation achieved by applying ensemble classifiers devel-
oped using two combination rules (MV and PCEW [α =
1 and α = 5]). The minimum, the maximum, and the
average test accuracies of the base classifiers, as well as the
test accuracies of the ensemble classifiers are presented in
Tables III and IV for BCI IV 2A and BCI IV 2B datasets,
respectively. Comparing the results achieved for the MV
and the PCEW shows that there is virtually no difference
between these methods. Therefore, hereafter, we will use the
results of the MV combination rule that required no addi-
tional hyperparameter such as α used in PCEW. Comparing
the accuracies of the ensemble classifiers with the average
accuracies of the constructed base classifiers on test data
shows that the ensemble scheme significantly outperforms
the base classifiers. This observations is verified statistically
by a one-sided (paired) Wilcoxon signed rank test with
the alternative hypothesis that the classification accuracy
achieved by an ensemble classifier is greater than the average
classification accuracy obtained by its base classifiers. Table

V shows the P-values of the tests for all pairwise comparison
between the performance of the ensemble classifiers and the
average performance of base classifiers. It is observed that
all P -values are smaller than 0.01, which is far below the
common significance level of 0.05, indicating the significant
improvement achieved by the ensemble classifiers.

B. Comparison with the State-of-the-Art Methods

Zhang et al. [39] and Roy et al. [40] have recently reported
the subject-independent classification performance of their
developed classifiers on BCI IV 2A and 2B datasets, respec-
tively. In particular, Zhang et al. [39] proposed the Convolu-
tional Recurrent Attention Model (CRAM), which encodes
the high-level representation of EEG data via CNN and
learns the temporal patterns using a recurrent mechanism.
They showed that CRAM outperforms a number of state-of-
the-art methods including: EEGNet [15], Cropped-Training
CNN (CTCNN) [35], EEG-Image [36], AE-XGboost [37],
Filter Bank Common Spatial Pattern (FBCSP) [38], a three-
layered CNN proposed in [39], and a two-layer Long Short-
Term Memory (LSTM) proposed in [39]. Roy et al. [40], on
the other hand, proposed a CNN architecture and evaluated
its performance on the BCI IV 2B dataset. Table VI presents
the average (over all subjects) subject-independent classifi-
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TABLE V
P-VALUES CALCULATED USING ONE-SIDED WILCOXON SIGNED RANK TEST FOR PAIRWISE COMPARISON BETWEEN THE CLASSIFICATION

ACCURACY ACHIEVED BY AN ENSEMBLE VS. AVERAGE ACCURACY OBTAINED USING THE BASE CLASSIFIERS FOR TWO DATASETS

Combiner vs. Average BCI IV 2A BCI IV 2B
MV vs. Average 0.00586 0.00195

PCEW (α = 1) vs. Average 0.00391 0.00195
PCEW (α = 5) vs. Average 0.00195 0.00195

TABLE VI
PERFORMANCE COMPARISON OF THE SUBJECT-INDEPENDENT (SI) METHODS USING BCI IV 2A AND 2B DATASETS

Method Dataset Mean±STD % Range (MIN–MAX) %
EEGnet [15] BCI IV 2A 51.32±5.18 21.84 (39.54–61.38)
CTCNN [35] BCI IV 2A 47.67±6.18 44.62 (26.04–70.66)

EEG Image [36] BCI IV 2A 32.70±7.18 12.67 (26.40–39.06)
AE Xgboost [37] BCI IV 2A 33.18±8.18 8.16 (30.9–39.06)

FBCSP [38] BCI IV 2A 35.69±9.18 23.09 (24.83–47.92)
CNN [39] BCI IV 2A 47.20±10.18 16.66 (41.15–57.81)
RNN [39] BCI IV 2A 35.48±11.18 6.49 (32.63–39.12)

CRAM [39] BCI IV 2A 59.22±12.18 30.76 (42.35–73.11)
Proposed BCI IV 2A 64.16±8.60 25.81 (53.00–78.82 )
Roy [40] BCI IV 2B 67.78±14.18 27.22 (54.2–81.42)
Proposed BCI IV 2B 66.28±8.52 29.42 (53.87–83.29 )

TABLE VII
P-VALUES CALCULATED USING ONE-SIDED WILCOXON SIGNED RANK

TEST FOR PAIRWISE COMPARISON BETWEEN THE CLASSIFICATION

ACCURACY ACHIEVED BY THE PROPOSED METHOD AND OTHER

METHODS FOR BCI 2A AND 2B DATASETS

State-of-the-art methods Dataset P-values
EEGnet [15] BCI IV 2A 0.00195
CTCNN [35] BCI IV 2A 0.00195

EEG Image [36] BCI IV 2A 0.00195
AE Xgboost [37] BCI IV 2A 0.00195

FBCSP [38] BCI IV 2A 0.00195
CNN [39] BCI IV 2A 0.00195
RNN [39] BCI IV 2A 0.00195

CRAM [39] BCI IV 2A 0.02734
Roy [40] BCI IV 2B 0.95120

cation accuracies for achieved different methods reported in
[39] and [40] over BCI IV 2A and 2B datasets, respectively.

Table VII shows the P -values obtained using a one-sided
(paired) Wilcoxon signed rank test to compare the subject-
independent performance of the proposed ensemble scheme
(i.e., results presented in Table III) with those reported in
[39]. As it can be seen in this table, in all cases the P -
values are less than the significance level of 0.05, which indi-
cates a significant improvement in classification performance
achieved by the proposed multi-subject ensemble CNN over
all methods assessed on BCI IV 2A dataset in [39].

On the other hand, the result presented in Table VI for
BCI IV 2B dataset shows no improvement in average classi-
fication performance achieved by our method with respect to
that of Roy et al. [40] (corroborated with a P -value close to 1
in Table VII). Nevertheless, a two-sided (paired) Wilcoxon
signed rank test for the hypothesis of distinction between
our results with those of Roy et al. [40] reported on BCI
IV 2B dataset has a P-value of 0.12890. In other words,
on BCI IV 2B dataset, we observe no significant difference

between the performance of our multi-subject ensemble CNN
with the performance CNN-based Mega Blocks proposed
in [40]. Altogether, these observations confirm the efficacy
of the proposed CNN ensemble scheme with respect to a
number of state-of-the-art methods for subject-independent
classification of motor imagery based EEG.

V. CONCLUSION

In this work, we examined the feasibility of using a
multi-subject ensemble CNN architecture for classification
of motor imagery based EEG collected from individuals
that have been entirely unseen during the training phase
(i.e., subject-independent classification). The results show
performance improvement achieved by the proposed ensem-
ble CNN scheme with respect to the base CNN classifiers
as well as a number of state-of-the-art methods proposed
previously in the literature. These results, in turn, imply the
efficacy of the proposed scheme in tackling substantial inter-
subject variability that is the major impediment to achieving
high accuracy in subject-independent classification of EEG
records in BCI applications. An important research issue for
the future is to study the effect of the number of subjects
that are used in training (including model selection) on the
performance of the proposed multi-subject ensemble CNN
classification rule.
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