
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged
Learning of Protein Markers

Winston Zhang1, Jonas Bianchi2,3, Najla Al Turkestani2, Celia Le2, Romain Deleat-Besson2,
Antonio Ruellas2, Lucia Cevidanes2, Marilia Yatabe2, Joao Gonçalves3, Erika Benavides5, Fabiana Soki5,
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Abstract— Diagnosis of temporomandibular joint (TMJ) Os-
teoarthritis (OA) before serious degradation of cartilage and
subchondral bone occurs can help prevent chronic pain and
disability. Clinical, radiomic, and protein markers collected
from TMJ OA patients have been shown to be predictive of
OA onset. Since protein data can often be unavailable for
clinical diagnosis, we harnessed the learning using privileged
information (LUPI) paradigm to make use of protein markers
only during classifier training. Three different LUPI algorithms
are compared with traditional machine learning models on a
dataset extracted from 92 unique OA patients and controls.
The best classifier performance of 0.80 AUC and 75.6 accuracy
was obtained from the KRVFL+ model using privileged protein
features. Results show that LUPI-based algorithms using privi-
leged protein data can improve final diagnostic performance of
TMJ OA classifiers without needing protein microarray data
during classifier diagnosis.

I. INTRODUCTION

Temporomandibular Joint (TMJ) disorders are clinical
conditions affecting over 10 milllion Americans [1]. TMJ
degeneration breaks down cartilage and alters the bone shape
of the mandibular condyle and articular fossa [2]. These
morphological changes result in chronic pain and decreased
quality of life [3]. Diagnosis of osteoarthritic (OA) changes
in the TMJ is not straightforward due to the frequent absence
of symptoms before significant degeneration of the joint has
occurred [4]. No disease-modifying therapy exists.

Clinical, imaging, and biomolecular protein features have
been studied and found to help with early diagnosis of TMJ
OA [5]. Cone-beam computed tomography (CBCT) imaging
has been added as diagnostic criteria to detect presence
of bone morphology alteration since 2014 [6]-[7]. Protein
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levels in synovial fluid, serum, and saliva were found to
be correlated with bone resorption [8] and may be potential
therapeutic targets.

Unfortunately, clinical centers are often not equipped with
the necessary microarray kits to measure protein levels in
patient serum and saliva. Furthermore, collection of protein
biomarkers from every patient may become cost-prohibitive.
Thus, reducing the dependence of TMJ OA diagnosis on
collecting protein biomarkers will improve clinical access to
developed OA classifiers.

Learning using Privileged Information (LUPI) aims to im-
prove the generalization ability of machine learning models
by using a set of additional information named privileged
information [9]. Intuitively, privileged information helps the
diagnostic model determine between easy and hard samples
in the training set [10]. Privileged information acts as a
teacher that guides the learning model during training, but is
not available during testing stage prediction.

LUPI is suitable for clinical applications when multimodal
data can be used to construct a training dataset, but is difficult
to collect during diagnosis. Li et al. found that the LUPI
framework was effective when using separate neuro-imaging
modalities as privileged information to diagnose Alzheimer’s
disease [11]. Ye et al. also used multimodal MRI imaging
data to improve glioma classification [12]. LUPI is also
useful for incorporating information from widely differing
data sources. Duan et al. augmented glaucoma detection
from images with privileged information from single nucleic
polymorphisms [13].

We propose a new LUPI-based framework for TMJ OA
diagnosis incorporating protein marker levels as privileged
information. The main advantage is an increased accessibility
of TMJ OA diagnosis, as final diagnostic models will only
rely on routinely collected clinical and radiographic data to
make a classification. Furthermore, the multimodal nature of
data used for TMJ OA classification is well suited for the
LUPI paradigm. The dataset used is introduced in Section
II. The proposed LUPI algorithms are described in III.
Experiment results are shown in IV and finally, conclusions
are drawn in Section V.

II. DATASET

The cross-sectional dataset consists of data from 46 early-
stage TMJ OA patients and 46 age and gender-matched
controls. Patient diagnosis was confirmed by a TMJ specialist

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 1810



at the University of Michigan Medicine Oral Surgery Clinic
using the Diagnostic Criteria for Temporomandibular Dis-
orders (DC/TMD) [14]. Data was collected with informed
consent and following guidelines of the Institutional Re-
view Board (IRB) at the University of Michigan (number
HUM00113199).

6 clinical features were collected by a specialist for
every patient based on the DC/TMD criteria: age of patient,
headaches in last 6 months, muscle soreness in last 6 months,
vertical range unassisted without pain (mm), vertical range
unassisted maximum (mm), vertical range assisted maximum
(mm).

Fig. 1. Example of raw CBCT slice with condyle volume of interest (VOI)
selected in red (left). Trabecular bone VOI visualization (right).

CBCT scans of each patient’s condyles were obtained
using the 3D Accuitomo machine (J. Morita MFG. CORP
Tokyo acquisition, Japan) and exported to DICOM format us-
ing manufacturer software. Details of scanning protocol can
be found in [5]. An example scan is in Figure 1. Radiomic
features were collected using the BoneTexture module from
the 3D-Slicer software using optimal parameters found in
[15]. 23 texture and bone morphology features were extracted
from the lateral condyle and an additional 23 features from
the mandibular fossa.

13 protein levels previously found correlated with arthritis
progression, inflammation, and bone morphology changes [8]
were measured in each patient’s saliva and serum samples
using custom protein microarrays from RayBiotech, Inc.
Norcross, GA. Sample acquisition protocols and raw values
are described in [5]. The protein MMP-3 was not expressed
in saliva, hence 25 protein features were collected.

In total, the dataset consists of 77 features (6 clinical, 46
imaging, and 25 protein) collected from 92 patients.

III. METHODS

Fig. 2. Proposed LUPI framework for TMJ OA diagnosis

In the general LUPI-framework, the training dataset can
be represented as a set of triplets Γ = {(xi, x∗i , yi)|xi ∈

X,x∗i ∈ X∗, yi ∈ Y, i = 1...n}, where n is the number
of training samples, X and X∗ represent the original and
privileged feature sets, d and d∗ are the number of features
in X and X∗, and Y is the set of training labels.

In the TMJ OA dataset, there are 92 patients (n = 92)
and we treat the imaging and clinical features as the original
feature set X , where d = 52 features (6 clinical + 46
imaging). We treat the protein features as the privileged
feature set X∗, where d∗ = 25 features (i.e. 25 protein). yi ∈
{−1, 1} which denotes control and OA patients respectively.

Figure 2 summarizes the steps for training and applying
the LUPI-based TMJ OA classifier. During training, the
imaging and clinical feature set, X , and the protein feature
set, X∗, undergo feature selection to find the optimal set
of features for classifier training. The LUPI classifier will
then attempt to differentiate between control and OA patients
in the training set with X , while using X∗ as auxiliary
information to distinguish between easy and hard training
samples [10].

In the testing stage, protein features X∗ are unavailable.
The features previously selected from X during training are
used for classifier inference on the unseen test set patients,
after which a classification of control or OA is obtained for
each test patient.

A. Feature Selection

Traditional feature selection methods choose features
based on relevance (i.e. mutual information) with the target
label Y [16]. Following the intuition that privileged features
transfer information to help a model assess the difficulty
of each training sample, features chosen from X∗ should
contain information about Y to ensure chosen features will
help final performance. However, chosen privileged features
should not contain information from X to prevent transfer
of redundant information [17].

We calculate feature relevance with the Area Under Re-
ceiver Operating Curve (AUC) value from a two-sample
Mann-Whitney U test between feature and target variable.
We then evaluate two feature selection methods: (M1) se-
lection of the top k and k∗ features by highest AUC, where
k and k∗ are hyperparameters representing the number of
features chosen from X and X∗ respectively; and (M2),
selection of the same features as in (M1), except for the
replacement of all features from X∗ that have an absolute
Pearson correlation with any feature from X exceeding 0.5.

B. LUPI Algorithms

We develop and compare 3 LUPI classifiers with non-
LUPI analogues in order to evaluate the effectiveness of the
LUPI paradigm for TMJ OA diagnosis.

The Support Vector Machine (SVM) is a commonly used
classifier. In this work we use the gaussian kernel SVM for
all experiments. SVM+ proposed by Vapnik et al. [9] uses
X∗ to model the slack variables for training samples found
in soft-margin SVM by solving for the following primal
problem:
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min
w,w∗,b,b∗

1

2
(||w||22 + γ||w∗||22) + C

n∑
i=1

(w∗ · x∗i + b∗)

s.t. yi(w · xi + b) ≥ 1− (w∗ · x∗i + b∗), i = 1, ..., n

(w∗ · x∗i + b∗) ≥ 0, i = 1, ..., n

(1)

where w, b, w∗, and b∗ are the weight and bias variables for
the decision rule and correcting function respectively and
γ and C are hyperparameters > 0. In our experiments we
use the alternating SMO introduced by Pechyony et al. for
optimization of SVM+ [18].

The random vector functional link network (RVFL) [19]
is a simple feedforward neural network.

Fig. 3. Random vector functional link network architecture [11]

In Figure 3, ω and b are randomly initialized and fixed
during training, so that input data fed into the network
is transformed into two sets of inputs: H1 containing the
original input and H2 containing the inputs transformed by
ω and b. The weights for the H1 and H2 inputs, β, are then
calculated. To incorporate privileged input X∗, the model
RVFL+ optimizes a similar problem as SVM+:

min
β,β∗

1

2
(||β||22 + γ||β∗||22) + C

n∑
i=1

(h̃(x∗i )β
∗)

s.t. h(xi)β = yi − h̃(x∗i )β
∗, i = 1, ..., n

(2)

Here, X∗ is fed into a separate RVFL network and
used to estimate the correcting function. h(xi) and h̃(x∗i )
represent the concatenation of H1 and H2 in the original
and privileged networks respectively. A kernel-based RVFL+
algorithm, named KRVFL+, approximates RVFL+ while
improving generalization. A detailed formulation for RVFL
and KRVFL+ can be found in [20].

Finally, the iterated privileged learning model (IPL) [21]
applies privileged information to weak learner boosting.
We compare this LUPI model with the traditional boosting
method Adaboost [22]. Classification and regression tree
(CART) method is used as the weak learner in both algo-
rithms.

IV. EXPERIMENTS AND RESULTS

We evaluate both non-LUPI and LUPI-based algorithms
on the TMJ OA dataset using an 80%-20% training testing
split. We conduct a grid search and 5-fold cross-validation
(CV) on the training set to determine the optimal hyper-
parameters for each algorithm. Hyperparameters k and k∗

are also grid searched over the range [5, d] and [5, d∗]
respectively. Test results are obtained by taking the average
of test set predictions from all 5 models trained during
the best 5-fold CV run. The overall procedure is repeated
10 times to avoid sampling bias from random train-test
partitioning, and final reported results are the mean±standard
deviation (SD) test results across all 10 repetitions.

A. Feature Selection Comparison

We first evaluate the 2 proposed feature selection methods
by comparing the SVM and SVM+ algorithms on different
feature sets. In table I, Cl are the clinical features, Im the
imaging, and Pr the protein. ∗Pr indicates privileged protein
features, meaning that the LUPI-based SVM+ algorithm is
used. (M1) and (M2) indicate the feature selection method
used.

TABLE I
SVM AND SVM+ COMPARISON ON FEATURE SETS

Features AUC Accuracy
A Cl+Im (M1) 0.759± 0.050 71.7± 4.9
B Cl+Im+Pr (M1) 0.754± 0.048 70.0± 6.0
C Cl+Im *Pr (M1) 0.764± 0.054 73.3± 5.7
D Cl+Im *Pr (M2) 0.773 ± 0.051 73.9 ± 6.4

Experiments using LUPI-based methods perform better
than non-LUPI methods. Experiment A outperforms B de-
spite B containing protein features in the original feature set.
This suggests protein information is better incorporated into
diagnosis using the LUPI framework. Feature selection (M2)
results in higher performance than (M1), so the following
experiments will use method (M2) for privileged selection.

B. LUPI and non-LUPI Comparison

We evaluate the performance of 3 non-LUPI algorithms
(Gaussian SVM, RVFL, and Adaboost) using X = {Cl ∪
Im}. We compare them to the performance of 3 LUPI-based

algorithms (SVM+, KRVFL+, and IPL) using X = {Cl ∪
Im} and X∗ = {Pr}. Results are in Table II.

TABLE II
LUPI AND NON-LUPI COMPARISON

Algorithm AUC Accuracy
SVM 0.759± 0.050 71.7± 4.9
SVM+ 0.773± 0.051 73.9± 6.4
Adaboost 0.767± 0.095 68.3± 8.7
IPL 0.775± 0.070 75.0 ± 4.7
RVFL 0.744± 0.072 70.0± 6.5
KRVFL+ 0.779 ± 0.053 73.9± 5.3

In all comparisons, LUPI outperforms non-LUPI methods.
Accuracy increased by at least 2.2% for all 3 comparisons.
AUC and Accuracy SD decreased for IPL and KRVFL+
models.

C. Protein Interactions

Finally, we evaluate the effect of interaction features when
added to X∗. Protein interactions were found to be important
in TMJ OA diagnosis [5]. We create feature set PrX by
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taking the pairwise product of every feature in Pr, generating∑d∗

i=1 i = 325 new interaction features when d∗ = 25. Here,
we use X = {Cl ∪ Im} and X∗ = {Pr ∪ PrX}. All
experiments use feature selection method (M2). Results are
in Table III.

TABLE III
EFFECT OF PROTEIN INTERACTION FEATURES ON PERFORMANCE

Algorithm AUC Accuracy
SVM+ 0.773± 0.051 73.9± 6.4
SVM+ *PrX 0.786± 0.041 74.4± 6.0
IPL 0.775± 0.070 75.0± 4.7
IPL *PrX 0.785± 0.071 75.6 ± 5.4
KRVFL+ 0.779± 0.053 73.9± 5.3
KRVFL+ *PrX 0.800 ± 0.047 75.6 ± 6.0

All comparisons had an increase in performance after
including protein interaction features. Comparing PrX LUPI
with non-LUPI performance from the previous experiment,
SVM+ improved AUC by 0.027 and accuracy by 2.7% when
compared to SVM, IPL improved AUC by 0.018 and accu-
racy by 7.3% when compared to Adaboost, and KRVFL+
improved AUC by 0.056 and accuracy by 5.6%. The SD of
AUC and accuracy also decreased for the IPL and KRVFL+
models after the introduction of protein interactions. The
corrected two-tailed t-test between the AUC performances
of KRVFL+ with PrX features and non-LUPI RVFL found
a significant p-value of 0.035.

V. CONCLUSIONS

We developed a novel LUPI framework for TMJ OA
diagnosis, combining clinical, imaging, and protein data.
While clinical and imaging markers are the current criteria
for disease classification, this study’s experimental results
show that all LUPI algorithms improved the performance
when compared with their analogous baseline classifiers
that do not use privileged protein information. Correlation-
based privileged feature selection also showed improvement
compared to naive feature ranking for privileged features.
Furthermore, LUPI outperforms non-LUPI performance even
when protein features are included in the original feature
set and available during testing. This agrees with previous
studies by Li et al. [11] and Duan et al. [13] suggesting
that incorporating multimodal data as privileged information
helps train better classifiers. Overall, the LUPI framework
shows promise for improving the cost accessibility and
performance of TMJ OA diagnosis using protein markers.

REFERENCES

[1] “Tmj (temporomandibular joint and muscle disorders).” [Online].
Available: https://www.nidcr.nih.gov/health-info/tmj

[2] X. Wang, J. Zhang, Y. Gan, and Y. Zhou, “Current understanding of
pathogenesis and treatment of tmj osteoarthritis,” Journal of dental
research, vol. 94, no. 5, pp. 666–673, 2015.

[3] E. Tanaka, M. Detamore, and L. Mercuri, “Degenerative disorders
of the temporomandibular joint: Etiology, diagnosis, and treatment,”
Journal of Dental Research, vol. 87, no. 4, pp. 296–307, 2008.

[4] M. Kalladka, S. Quek, G. Heir, E. Eliav, M. Mupparapu, and
A. Viswanath, “Temporomandibular joint osteoarthritis: diagnosis and
long-term conservative management: a topic review,” The Journal of
Indian Prosthodontic Society, vol. 14, no. 1, pp. 6–15, 2014.

[5] J. Bianchi, A. C. de Oliveira Ruellas, J. R. Gonçalves, B. Paniagua,
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