
  

  

Abstract— Deep learning techniques have been widely 

employed in semantic segmentation problems, especially in 

medical image analysis, for understanding image patterns. Skin 

cancer is a life-threatening problem, whereas timely detection 

can prevent and reduce the mortality rate. The aim is to segment 

the lesion area from the skin cancer image to help experts in the 

process of deeply understanding tissues and cancer cells' 

formation. Thus, we proposed an improved fully convolutional 

neural network (FCNN) architecture for lesion segmentation in 

dermoscopic skin cancer images. The FCNN network consists of 

multiple feature extraction layers forming a deep framework to 

obtain a larger vision for generating pixel labels. The novelty of 

the network lies in the way layers are stacked and the generation 

of customized weights in each convolutional layer to produce a 

full resolution feature map. The proposed model was compared 

with the top four winners of the International Skin Imaging 

Collaboration (ISIC) challenge using evaluation metrics such as 

accuracy, Jaccard index, and dice co-efficient. It outperformed 

the given state-of-the-art methods with higher values of the 

accuracy and Jaccard index. 

I. INTRODUCTION 

Skin cancer is the excessive growth of abnormal cells in 
the outermost skin layer. Cancerous cells overgrow and 
damage surrounding tissues to form a malignant tumor known 
as melanoma.  Melanoma is the most life-threatening form of 
skin cancer that spreads rapidly into the body, causing death if 
left untreated. It is estimated that new melanoma cases will 
increase by 5.8%, and the ratio of deaths due to melanoma will 
increase by 4.8% worldwide by 2021 [1]. In 2020, melanoma 
affected 2 million people in the USA [2], 15,229 in Australia 
in 2019 [3], and 26,158 in New Zealand in 2018 [4]. 
Melanoma is the fourth most common type of skin cancer in 
New Zealand. According to the American cancer society [5], 
the annual cost of skin cancer treatment in the U.S. is 
approximately $8.1 billion; $4.8 billion for nonmelanoma, and 
$3.3 billion for melanoma. As per the New Zealand census, 
$28.6 million costs are involved in cancer treatment, thus 
making it the most expensive procedure for the health sector. 

The primary cause of melanoma is direct exposure to UV 
radiation, and the ageing population is more prone to 
developing cancer than other age groups. The risk factors that 
contribute to melanoma formation include fair complexion, 
overexposure to sun rays, sunburn, genetic history, and weak 
immune system [6, 7]. Early detection and treatment help 
increase the survival rate; therefore, it is vital to detect this 
disease timely. However, there are few drawbacks in 

 
Ranpreet Kaur, is a PhD candidate at Auckland University of Technology, 

New Zealand (phone: 00642041794908; e-mail: ranpreet.kaur@aut.nz).   

*Hamid GholamHosseini., Associate Professor in the Electrical & 
Electronics Engineering Department, Auckland University of Technology, 

New Zealand (e-mail: hamid.gholamhosseini@aut.ac.nz).  

traditional clinical procedures, such as tedious, time-
consuming, expensive, accuracy variations, and limited 
availability of resources. Therefore, we aim to propose an 
automatic segmentation technique using deep learning to 
extract infected areas from the skin photographs and assists 
clinicians to speed up the process of understanding the nature 
of lesion patterns. It is crucial to analyze the shape, texture, 
and size of the lesion since benign moles closely resemble 
melanoma moles, thus, creating confusion.  

Our choice of methodology is deep learning networks 
because of recent advances in artificial intelligence in solving 
complex and challenging problems. In the literature, it has 
been seen that CNNs are successfully applied to classification 
problems, where their use to solve semantic segmentation 
problems has emerged recently. For example, the authors in 
[8] designed a deep convolutional neural network (DCNN) of 
50 layers by adding residual blocks presenting a two-phase 
framework of segmentation followed by classification. They 
proved that deeper networks are efficient in producing more 
detailed feature maps for recognition. They were ranked as the 
winner in ISBI 2016 challenge as compared to VGG16 and 
other participated teams. Bi et al. gave a multi-block fully 
convolutional neural network (FCN) to learn local coarse maps 
in the initial stages and finely detailed features in the later 
stages. They claimed that their method produced improved 
detection for the PH2 dataset [9] but did not give higher 
performance than the ISIC challenge participants. Yuan et al. 
[10] proposed an end-to-end trainable DCNN containing 19 
layers incorporating Jaccard distance as a loss function. They 
proved by comparing a different combination of 
hyperparameters that selecting suitable parameters is 
important to gain high performance. Another work by Al-
Masni et al. and Goyal et al.  [11, 12] proposed a full resolution 
convolutional network (FrCN) that calculates each pixel's 
resolution to produce a fully segmented map. Fengyine et 
al.[13] designed a network by including different main, spatial, 
and channel-wise attention branches and fusing their outcomes 
to generate high-resolution feature blocks. Their network is 
efficient in producing accurate lesion boundaries. Many other 
researchers proposed networks by customizing, extending, and 
applying transfer learning. The recent survey can be seen in 
[14] for comparative analysis.  

The literature study showed that deep learning has gained 
satisfactory results for the segmentation of skin lesions. 
However, there is room for developing a more efficient 
network for generating accurate lesion boundaries. Because 

Roopak Sinha, Head of Computer Science Department, Auckland 

University of Technology, New Zealand. (email: roopak.sinha@aut.ac.nz). 

Lesion Border Detection of Skin Cancer Images Using Deep Fully 

Convolutional Neural Network with Customized Weights 

R. Kaur, H. GholamHosseini*, Senior Member, IEEE, and R. Sinha, Member, IEEE 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 3035



  

manually marking the lesion boundaries and generating 
ground truths is a costly and labor-intensive process. 
Moreover, annotations marked by a dermatologist are not 
always accurate that can further affect the performance of the 
software diagnostic tool. Our few contributions are (a) 
designing a new FCNN framework by replacing traditional 
fully convolutional layers with 1 × 1 convolutional layers 
focusing on calculating each pixel's probability. (b) fusing 
elements of shallow layers that have local information to 
enhance segmentation results. (c) customized weights are 
initialized in each convolution layer using a leakyReLU 
function.  

The remainder of this paper is organized into sections as 
section II will explain the datasets. In section III, we will 
elaborate on the methodology of the proposed work. In section 
IV, the experimental analysis will be presented, and finally, we 
will conclude the paper in section V. 

II. MATERIALS 

The proposed study employed three benchmark skin 
cancer datasets. The first two datasets were from The 
International skin Imaging challenge (ISIC), namely ISIC 
2016 [15], ISIC 2017 [16]. These sets contain dermoscopic 
skin cancer images of types benign and malignant. The ISIC 
2016 contains 900 training, 379 test samples, and 2000 
training and 366 test images in ISIC 2017. The corresponding 
ground truth images are available, which are annotated by the 
experts for performing a comparison between segmented and 
ground images. The second dataset used for testing purposes 
only is the PH2 [9] obtained from the Dermatology Service of 
Hospital Pedro Hispano (Matosinhos, Portugal). The dataset 
has 160 nevus images and 40 dermoscopic melanoma images. 
The images are resized to 192 × 256 dimensions using the 
nearest neighbor interpolation method to reduce the 
computation time and to increase the network’s performance. 

III. METHODOLOGY 

A dense convolutional neural network is developed with 
16 convolutional layers organized into 5 blocks followed by 
batch normalization, leakyReLU, and pooling layers as shown 
in Fig. 1. The blocks of the network are cascaded with 
transposed layers, crop layer, and double 1 × 1 convolution 
layer. The network consists of multiple convolutional layers, 
calculates the input data features by sliding kernels over an 
entire image. In the convolutional layer, few parameters are 
artificially set, such as kernel size, the number of kernels, 
stride, and padding. The number of kernels is increasing in 
each convolutional layer with kernel size 3 × 3. The padding 
defines the style of handling border samples if the input image 
does not fit properly, and stride is the step size of the moving 
kernel over an image. Another parameter set in the 
convolutional layer is a customized function proposed by He 
et al. [17] to calculate the weights using: 

𝜎2 =
2

(1+𝑠2)𝑚
, 𝑤ℎ𝑒𝑟𝑒 𝑚 = 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒(𝑖) ∗

𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒(𝑗) ∗ 𝑛𝑢𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠                                                (1) 

The weights are initialized by setting the mean value of 

normalized distribution to zero and variance is computed by 

using (1). Here, s defines the scale of the leakyReLU layer that 

is set as '0.3' after fine-tuning, and 'm' is calculated by 

multiplying the depth and width of a kernel with the number 

of channels. Next, a leakyReLU activation function is used to 

improves the network's performance without adding any extra 

computational cost or creating any overfitting problem. 

leakyReLU function passes the input samples 'x' to the next 

layer if it is positive, and multiply the sample with any scalar 

value if it is negative using the following equation: 

              𝑅𝑒𝐿𝑈(𝑥) = {
𝑠𝑐𝑎𝑙𝑎𝑟 ∗ 𝑥, 𝑥 < 0
𝑥,                   𝑥 ≥ 0

                      (2) 

A batch normalization layer is used between convolution 
and leakyReLU to normalize each input data according to 
mini-batch size. A mini-batch size is a variation of the gradient 
descent algorithm that splits the training dataset into small 
batches to calculate network error and update network 
coefficients. Batch size is the number of samples processed 
before the network is updated. 

 

Figure 1.  The proposed architecture of the CNN 

The network is designed to obtain deep features; however, 
spatial resolution is lost as the network goes deeper and deeper 
due to the successive use of pooling layers reducing feature 
map size. Therefore, two up-sampling layers are embedded at 
the end to transform the feature map back to its original 
dimensions. Moreover, the shallow layers contain more local 
information about the object domain. Thus, the output of 
pooling layers is fused elementwise to enhance the results. At 
the end of the network, a double 1 × 1 convolutional layer is 
used to convert features into dense feature maps instead of 
fully connected layers. Then Softmax function [18] is used to 
transform the feature map coefficients between 0 and 1 using 
(3) so that input vector elements can be interpreted as pixels' 
probabilities. 

                       𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�⃗�)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑛=1
                              (3) 

�⃗�𝑖 is an input vector, 𝑒𝑥𝑖  is a standard exponential function 
for the input vector 𝑥𝑖, 𝐾 is the number of classes predicted by 
the network, and 𝑒𝑥𝑗 is the exponential function for the output 
vector. The exponential function used in the Softmax layer 
normalizes the output of the neural network into the 
probability distribution over predicted outcomes. Finally, the 
pixel classification layer applied cross-entropy loss function to 
identify loss between the predicted P and target T samples 
using: 

                       𝐿𝑜𝑠𝑠 =  
1

𝑁
∑ ∑ 𝑤𝑖𝑇𝑛𝑖log (𝑃𝑛𝑖)𝑁

𝑛=1
𝐾
𝑖=1             (4) 
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Here, 𝑁 is the number of observations, 𝐾 is the number of 
classes, and 𝑤 is a vector of weights determined by the 
network for each class. The entropy loss is mostly used to 
evaluate the performance of medical image segmentation 
compared to the ground truth images.  

IV. RESULTS 

This section illustrates the experimental results produced 
by the network trained with ISIC 2016, and ISIC 2017 training 
samples, and tested on ISIC 2016-2017 and PH2 test datasets.   
Fig. 2 shows the accuracy pattern versus the number of 
iterations. It presents how the network offered higher accuracy 
with the increase in the iterations on ISIC 2016 test set. 
Similarly, it presents the performance of the network for ISIC 
2017 and PH2 test data offering rising accuracy over the 
iterations. Moreover, the network objectively evaluated based 
on performance metrics such as accuracy (ACC), Jaccard 
index (JAC), and Sorensen Dice coefficient (DICE) and 
compared with the other related studies in Table I. ACC 
defines the number of correctly identified pixels over the total 
number of pixels, JAC index is the overlapping ratio between 
correctly classified pixels divided by a total number of ground 
truth pixels and predicted pixels in that class. The third 
parameter DICE indicates the matching score between the 
predicted boundary of each class and the truly segmented 
boundary in the ground truth. 

 

Figure 2.  Performance on the ISIC 2016, 2017 & PH2 test sets. 

These metrics are calculated using elements of the 
confusion matrix i.e., true positives, true negatives, false 
positives, and false negatives (TP, TN, FP, and FN, 
respectively) using the following formulas: 

                  Accuracy =
TP+TN

TP+TN+FP+FN
                            (5) 

                  Jaccard Index =
TP

TP+FP+FN
                           (6) 

                  DICE =
2∗TP

2∗TP+FP+FN
                                       (7) 

The value of these parameters is expected high for 
obtaining better segmentation results. Table I shows the 
quantitative results of the proposed model on the adopted 
datasets. The highest ACC and JAC index score were recorded 
for the network as compared to the teams participated in ISIC 
2016 and 2017 challenge. The primary parameter used by the 
ISIC challenge to rank their winners is the JAC index. The 
proposed network outperformed the other state-of-the-art 
methods with an ACC of 96.3% and JAC index of 84.5% on 
ISIC 2016 and 95.9% ACC and 78.9% JAC on ISIC 2017. 
Additionally, the performance analysis of the trained model on 
the PH2 test dataset showed higher values of ACC 94.9% and 
JAC index 90.9% as compared to other related studies. It is 
worth mentioning here that we obtained lesser values of the 
DICE score that defines the overlapping ratio of boundary 
lines between segmented and target output. This is because any 
pre-processing technique has not been applied to enhance 
noisy images. In future work, the emphasis will be on 
improving noisy images to enhance segmentation results. 

 

 

Figure 3.  Segmentation results on few images. 

Fig. 3 displays the segmented outputs produced by the 
proposed model. Fig. 3a presents the original image, Fig. 3b 
shows the labeled images in which the network marked all 
nonzero pixels with dark blue color and all background pixels 
with cyan color. Then in Fig. 3c, the segmented images can be 
seen, and Fig. 3d shows the overlapping of ground truth and a 
segmented image representing the JAC score. In this image, 
green and magenta color displays where the intensities are 

TABLE I.  QUANTITATIVE ANALYSIS OF THE PROPOSED MODEL ON ISIC 2016, ISIC 2017, AND PH2
 TEST DATASET 

ISIC 2016 ISIC 2017 PH2 

References ACC JAC  DICE  References ACC      JAC   DICE  References ACC   JAC DICE 

Proposed method 0.963 0.845 0.623  Proposed method 0.959 0.789 0.607  Proposed   method 0.948 0.909 0.743 

U. Sanchez [19] 
0.953 0.843 

0.910 
 Y. Yuan [20] 0.934 0.784 

0.849 
 Unver [21] 0.929 0.881 0.795 

L. Yu [8] 0.949 0.829 0.897  M. Berseth [22]  0.932 0.762 0.847  A. Nazi [23] ----- 0.870 0.879 

M. Rahman [24] 0.952 0.822 0.895  L. Bi [25] 0.934 0.760 0.844  L. Bi [26] 0.942 0.839 0.906 

L. Huang [27] 0.958 0.811 0.911  Menegola [28] 0.931 0.754 0.839  F. Afza [29] 0.937 ---- ----- 
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different in the two images. It can be seen that the third sample 
image is quite noisy, containing hairlines. Thus, the 
corresponding JAC score is less than the other two images, 
which confirms that noise artifacts affect the algorithm's 
performance. 

V. CONCLUSION 

This paper discussed a CNN model for skin lesion 

segmentation on challenging dermoscopic skin cancer images 

containing color variations, hairlines, and poor illumination. 

The network was designed using 16 convolutional layers with 

additional weight calculation functions in each layer to 

generate customized weights. Moreover, the up-sampling 

layers were included to regain the spatial resolution of the 

output samples. The network's hyperparameters were finely 

tuned to enhance segmentation results. The network 

outperformed the other state-of-the-art methods with high 

segmentation ACC and JAC score. The proposed network can 

be successfully applied in clinical settings to generate ground 

truth patterns and understand lesion nature for cancer 

diagnosis. Future research will evaluate the proposed network 

using versatile datasets to make it more general for other 

application domains.  
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