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Abstract— Augmented reality is a quickly advancing field
that has the potential to provide surgeons with computer
generated diagnostic results during surgery. Visual classification
of diseased tissue generated during a diagnostic procedure, for
example, trans-urethral cystoscopy of the urinary bladder, can
aid a surgeon during the following resection to ensure no tissue
is inadvertently missed. Work with 2D segmentation of camera
images is well developed and frameworks already exist to fuse
this data real-time in a 3D reconstruction. These existing frame-
works, however, maintain only the most recent segmentation
information when building the 3D reconstruction. This work
proposes a method to build a 3D point cloud classification using
random walk Kalman filters. The method enables retention
of prior classification information and additionally provides
a framework to include additional sensor classifications con-
tributing to a single, final 3D segmentation result. The method
is demonstrated using a simulated environment intended to
emulate the inside of a human bladder.

I. INTRODUCTION

During endoscopic or similar visually obstructed, camera-
driven surgeries, a surgeon maintains only a limited view
during the work. This leads to difficulty when dividing
a surgery such as a trans-urethral resection into separate
diagnostic and resection operations. Locations of tumors or
suspicious tissue discovered during the investigative phase
must be memorized by the surgeon or rediscovered during
resection. This could lead to missed tumors and the unusually
high recurrence rate associated with bladder cancer and is
supported by a 2010 study that found a 40% recurrence rate
due to missed tumors during trans-urethral resections [1].

Virtual or augmented reality systems provide a framework
to build a synthetic map embedded with additional infor-
mation that could help to solve this problem. Many works
have been published that are capable of reconstructing a 3-
dimensional map of an environment in real-time [2], [3]
and offline [4] using image data from a camera. Recent
works have begun to combine 2D semantic classification
of objects with the construction of these environments [5].
Application of these frameworks to endoscopic operations
is a very promising surgical advancement, but still requires
enhancements before it can gain the trust required for use in
such a sensitive and critical environment.

During reconstruction and segmentation of the 3D maps
previously mentioned, the segmentation is simply applied as
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a broadcasting of the resulting 2D segmentation mask of
the current video frame to its corresponding 3D component
(either a point or a triangular surface). The problem is this
method leads to lost information as it is easy for a bad
camera image angle or a poorly trained segmentation neural
network (NN) to lead to a poor outline of the current object
in question. This results in mislabeling of portions of the
3D map. The current frameworks maintain either the first
classification obtained or the most recent, but neither method
avoids this mislabeling problem.

This work introduces a method to maintain information
from multiple 2D segmentations made during the construc-
tion of a 3D point cloud, ideally leading to convergence
of the true segmented map. This capability is crucial when
dealing with endoscopic data, since it very common that
non-ideal or partial images can lead to improperly classified
tissue. The solution proposed uses a random walk model
for the classification and individual Kalman filters to update
the 3D map as new segmentation images are obtained. This
method not only allows for combining segmentation infor-
mation of multiple images, but also provides a framework
to include additional segmentation information that comes
from a different, possibly sparser, modality. After collection
and creation of the segmented 3D point cloud, smoothing
algorithms, such as [6], may be used to improve the results
further. The method is implemented in an online fashion as
would be required for use during an investigative operation
that uses an augmented reality assistive display.

The following in Section II will provide an overview of
the random walk model, Kalman filter, and how it is formed
to this problem. In Section III, the simulation environment
built and used to test the algorithm is introduced. Section IV
portrays some initial testing results showing the effectiveness
of the data fusing capabilities of the method and in Section
V concluding remarks are made along with comments re-
garding the future direction of the work.

II. KALMAN POINTS

The foundation of this contribution relies on the sensor
fusing capabilities of the Kalman filter to provide a base
for combining successive 2D classifications of a 3D envi-
ronment. The Kalman filter relies on the fusing of a model
prediction and a current measurement of a given system.
It is primarily used in dynamic system applications for
dynamical models that evolve through time where a stream of
incoming information from sensors such as an accelerometer
are joined with an approximated system model. The states
of this model are updated every time step using the model
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and measurements, which leads to convergence of the true
state values. For more information on the Kalman filter and
its prediction process, the reader is referred to [7].

In this work, the classification value c for every 3D
reconstructed point of an online generated point cloud is
stored as a state within a Kalman filter for the given point. If
considering m different classes that the point could possibly
belong to, a full state vector x = [c1 c2 . . . cm]> is obtained.
Since a model transition function is not known or, more
likely, does not exist, i.e. the classification is not expected
to change between measurements, the transition matrix is
assumed to be identity. This results in random walk, discrete
time, model dynamics at time step k

xk+1 = Ixk +w (1)

driven entirely by the process noise w ∼ N (0,Q) with zero
mean and covariance Q.

Measurements z of the system are obtained using existing
classification techniques that provide a prediction confidence
that the point belongs to each internal state. These measure-
ments can be described by

z = Hx+ v (2)

where the measurement matrix H = I since the
states are measured directly and with measurement noise
v ∼ N (0,R). This measurement noise in the context of a
classifier is essentially an additional measurement of how
much the classification can be trusted. For example, if after
training, a neural network performs consistently worse for a
particular class ci, then the covariance value associated with
state xi should be increased, reflecting a higher uncertainty.
Both, the measurement covariance R and process covariance
Q are both assumed to be diagonal matrices, implying the
individual states, or classifications, are independent from one
another.

Upon creation of each point, the initial state is directly
assigned the value of the corresponding segmentation value.
Subsequent classification measurements are applied with
the standard Kalman filter update algorithm. By applying
classifications in this way, a newly obtained erroneous
classification will not completely overwrite a previously
applied classification. This also enables the system to accept
measurements from a classifier that results in either a soft
classification

c ∈ [0, 1] (3)

or a hard classification

c ∈ {0, 1}. (4)

III. SEGMENTED POINT CLOUD GENERATION

A simulated endoscopic environment is constructed using
openGL [8] in which synthetic RGBD (color and depth)
images are generated. These images would be generated
in practice by using an RGBD camera directly or with
odometery data from a simultaneous localization and map-
ping algorithm such as [9] and then using reconstruction
techniques such as those proposed in [5].

Fig. 1. Testing framework with a simulated 2D surface mesh of human
bladder with cutaway showing interior image texture.

For trans-urethral surgeries a NN trained to recognize
bladder tumors such as that developed in [10] would be
used. However, as a publicly provided pre-trained NN is not
currently available, an off-the-shelf general object pre-trained
NN [11] is used. This network is lightly modified to provide
soft classifications for each pixel and images of cats are
projected to the representative bladder surface to represent
tumorous regions. This is sufficient to prove the feasibility
of the algorithm and also demonstrates the ability of the pro-
posed method to improve the overall classification resulting
from a conglomerate of lower quality classifications. Lower
quality in this sense referring to poor segmentation results
due to the augmented shape and angle of images projected
to the surface.

The 3D surface mesh of the testing framework can be
seen in Figure 1. The 3D geometry comes from an artistic
rendering of a human urinary bladder and the texture is
applied using a hand labeled segmented image. This allows
for maintaining a reference to what the true classification of
each point should be when evaluating the results.

The point cloud is generated in an online fashion using
key frames and the open source framework open3d [12].
Every key frame is broken into a color and depth image
and a new set of points is generated. In order to associate
overlapping images with existing points, an approximated
nearest neighbors (ANN) search is implemented using Annoy
[13] for each of the new points. This prevents the overall
point cloud from containing redundant information and pro-
vides the foundation for deciding what data is supplied as
measurement info to already constructed Kalman points. An
example of this is shown in Figure 2 where the overlapping
new points are reassigned to existing ones before adding
non-matched new points to the overall point cloud. The full
process is outlined in Algorithm 1.

In the current implementation, the ANN algorithm needs
to be rebuilt every key frame to include new points. For small
regions, such as those experienced in a bladder cystoscopy,
this is not a large problem. In an ideal case, the organ of
interest can be reconstructed in advance with an imaging
technique such as magnetic resonance imaging (MRI). From
this, a fixed set of points can be constructed eliminating the
task of dynamically adjusting the ANN search as new areas
are segmented. It is unlikely, however, that this approach
would be very reliable for such a geometrically dynamic
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Fig. 2. Example reassignment of overlapping points. Reassigned point
values are used to update the Kalman filters of the associated points.

Algorithm 1: Segmented point cloud generation.
Result: Point cloud containing classification data
// initialize states
pt cloud // empty point cloud
while new img // new key frame image
do

rgb, d = generate rgbd image(new img)
new points = open3d points from RGBD(rgb, d)
segm = NN(rgb) // segment image with

NN
foreach pt ∈ new points do

nearest pt = ANN(pt) // nearest
existing point

if norm(pt, nearest pt) < α then
kalman pt = nearest pt

else
kalman pt = new kalman pt
pt cloud += kalman pt

end
kalman pt.update(segm[pt]) // update

Kalman filter with
corresponding segmentation
value

end
ANN.initialize(pt cloud) // rebuild ANN

with updated point cloud
end

organ as the bladder. For this reason, the described online
generation method is used.

IV. RESULTS

For testing, the process noise covariance Q = [0.5]
is used for each generated point to reduce the likelihood
that the classification of each given point changes between
measurements. The measurement covariance is simply R =
[1]. Note that only one state is considered. This binary case
represents either cancerous tissue or not and comes from the
fact that only a single classifying tool is used. Sample key
frame images from the test model are evaluated that can be
seen in Figure 3. The top three images represent what is seen
by the monocular camera and the corresponding point cloud
classification is generated and shown below. Corresponding
areas between the images and the point cloud are marked to

TABLE I
JACCARD DISTANCE (INTERSECTION OVER UNION) FOR THE IMAGE

SEQUENCE OF FIGURES 3(A)-3(C).

Image 3(a) Image 3(b) Image 3(c)

Initial Value 0.84573 0.77935 0.77495

Latest Value 0.84573 0.75930 0.78788

KF Updated Value 0.84573 0.77006 0.80836

help the reader identify with orientation. A red point value
corresponds to a high confidence that the point belongs to
the given class, while blue is simply background material.

It is possible to see that in the third key frame image the
neural network was not capable of detecting the portion of
the suspected region in the upper left of the image inside the
“C” marker. However, the Kalman filter update prevented the
region from completely being reclassified as the background.
Therefore, the 3D point cloud view successfully maintains
the helpful information from prior classifications. With the
newly updated view, a surgeon would be alerted to the need
to double check this region and perhaps focus on taking an
additional or different sensor measurement at the region in
order to confirm the suspected tissue.

The results of the point cloud segmentation shown in
Figure 3 are listed in Table I, and simultaneously compared
with results that assume only either the segmentation value of
the latest or initial measurement for a given point is retained.
The Jaccard distance, or Intersection over Union value, is
used as a comparison metric for all cases and is given as

J(A,B) =
|A ∩B|
|A ∪B|

(5)

where A and B are the point classifications of the NN and
the true values, respectively. A cut-off threshold of 0.25 for
the NN classification is applied in order to obtain a binary
value for evaluation of (5). This cutoff value was found not
to be very influential for the results as the NN used resulted
in a near binary output already. This is seen by the apparent
green outlines in Figure 3 that actually occur simply due the
color blending between a confidence of 0 (blue) and 1 (red).

From Table I it can be seen that as more images are taken
and new areas are simultaneously explored, the retention of
all information through the Kalman filter, slowly drives the
classified point cloud to a more accurate overall segmentation
than the simple direct assignment methods. This result is to
be expected and shows that the provided method can provide
a tool for construction of more accurately segmented point
clouds during exploration of a localized region such as that
of the inside of a human bladder.

Naturally, the final segmentation is also dependent on the
accuracy of the 2D segmentation method used. An example
of an artificial inaccuracy simply due to the 2D segmentation
can be seen in the upper left of the classification images in
Figure 3. Despite a complete overlap of the detected region,
the resulting classification is always taken as the background
along the border of the images. This is likely due to padding
and original training conditions of the NN. Effects such as
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Example point cloud generation: (a)(b)(c) key frame image sequence taken from camera; (d)(e)(f) classified point cloud generation. Point coloring
from blue to red corresponds to a classification confidence (0-1) between background or suspicious regions, respectively. Yellow markers highlight select
corresponding areas between each image.

these should be accounted for, however, when using the
provided method the mentioned effect is reduced as seen
in the upper right corner of Figure 3(f).

V. CONCLUSION AND FUTURE WORK

A method of retaining 2D segmentation information from
prior images in a video sequence, either live or pre-recorded,
through the embedding of information as states in a Kalman
filter in individual points within a 3D point cloud has been
proposed. Each point within the cloud utilizes a random walk
dynamic model with a Kalman filter update algorithm to fuse
classification data from the different images. A simulated test
environment was used to demonstrate example cases to show
how the proposed method is able to push a final segmented
point cloud to a more accurate result. The method can be
combined with any existing image segmentation method that
provides a soft or hard pixel classification value in order
to fuse the segmentation of an object using images from
multiple angles. For evaluation purposes in this work, the
soft classifications were reduced to hard classifications using
thresholding.

The next major challenge in moving forward with this
framework is to reduce the computation time through the
use of pre-initialized surface data. In a surgical environment,
this can be obtained from pre-operative MRI images and
a registering step would need to be initially performed to
match the intraoperative navigation of the camera to the cor-
responding initialized surface. The segmentation values may
then be stored as texture information and quicker, already
well-established algorithms can be used for processing and
evaluating the data.
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