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Abstract— As global life expectancy is constantly rising, the
early detection of age-related, neurodegenerative diseases, such
as Parkinson’s disease, is becoming increasingly important. Pa-
tients suffering from Parkinson’s disease often show autonomic
nervous system dysfunction which is why its examination is an
important diagnostic tool. Measuring the response of the heart
rate (variability) to postural transitions and thereby assessing
the orthostatic reaction is a common indicator of autonomic
nervous system functioning. However, since these measurements
are commonly performed in a clinical environment, results
can be impaired by the white coat effect. To reduce this
influence as well as inter- and intra-day variations, our work
aims to investigate the assessment of orthostatic reactions in
free-living environments. We collected IMU and ECG data
of seven healthy participants over four days and evaluated
differences in orthostatic reactions between standardized tests
at lab, at home, as well as unsupervised recordings during
real-world conditions. Except for the first lab recording, we
detected significant changes in heart rate due to postural
transitions in all recording settings, with the strongest response
occurring during standardized tests at home. Our findings show
that real-world assessment of orthostatic reactions is possible
and provides comparable results to supervised assessments in
lab settings. Additionally, our results indicate high inter- and
intra-day variability which motivates the continuous orthostatic
reaction measurement over the span of multiple days. We are
convinced that our presented approach provides a first step
towards unobtrusive assessment of orthostatic reactions in real-
world environments, which might enable a more reliable early
detection of disorders of the autonomic nervous system.

I. INTRODUCTION

Early detection of age-related diseases, such as neurode-
generative disorders, is becoming increasingly important as
the average age of the world’s population is continuously
rising [1]. One of the most prominent examples of such
neurodegenerative disorders is Parkinson’s disease (PD). PD
manifests itself through cardinal motor symptoms, such as
tremor, rigor and bradykinesia, as well as through non-
motor symptoms, such as a dysfunction of the autonomic
nervous system (ANS) [2]. Among other functions, the ANS
is responsible for adapting the cardiovascular system to in-
creased physical activity or postural transitions (PT), e.g., the
transition from a sitting to a standing position (also referred
to as orthostatic reaction (OR)), which cause a drop in blood
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pressure. In order to counteract this and, thus, to maintain
the blood supply to the brain, veins and arteries in the legs
constrict and the heart rate (HR) increases [3]. Failure of OR
leads to orthostatic dysfunction (OD) which is indicated by a
considerable drop in blood pressure and missing HR response
after transitioning from a sitting to a standing position. OD
has a high prevalence among patients suffering from PD
(about 47%) [4] and can predict the onset of PD years
before motor symptoms become visible [5]. Moreover, in
combination with other non-motor symptoms, OD can affect
the patient’s quality of life, as it often leads to restrictions in
everyday activities [6]. Therefore, the examination of OD and
heart rate (variability) (HR(V)) is a very promising method
for the early detection of ANS disorders which may lead to
an early treatment to slow disease progression.

OD is typically assessed during clinical procedures, such
as by using the tilt table test and the Schellong test [7]. While
these procedures allow a standardized measurement of the
cardiovascular reaction to PTs, the validity is often reduced
by the white coat syndrome, which is the presence of elevated
blood pressure in a clinical setting due to anxiety [8]. In
previous work, we presented an approach to assess ORs using
smartphone sensors and a wearable ECG patch [9]. We were
able to classify healthy participants from PD patients based
on the acquired data. However, we evaluated our solution in
clinical environments and using single recordings only. These
snapshot measurements, though, do not account for the intra-
and inter-day fluctuations of cardiovascular reactivity. They
additionally increase the risk of missing HRV irregularities,
which occur only infrequently [10]. Therefore, collecting
HR(V) responses to PTs outside of the clinical environment
and over the span of multiple days might help to obtain more
representative evidence of an orthostatic dysfunction.

Previous studies have evaluated HRV to classify OD [10],
[11]. Although these results are very promising, the authors
only collected HRV data during sleep to reduce the influ-
ence of movement artifacts. Hence, they did not assess the
ANS reactivity to sudden changes of cardiovascular load,
as induced by PTs. However, analyzing these direct HR(V)
responses can provide additional valuable information for the
evaluation of OD. Therefore, we aim to investigate the feasi-
bility of assessing ORs in free-living environments by using
a light-weight wearable sensor that combines the collection
of cardiovascular data, measured via the electrocardiogram
(ECG), with PT information, measured via an inertial mea-
surement unit (IMU). To the best of our knowledge, our study
is the first to investigate the direct cardiovascular response
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to PTs in an unsupervised real-world setting and provides a
first step towards the unobtrusive assessment of orthostatic
dysfunction in free-living environments.

II. METHODS

A. Data Acquisition

For evaluating ORs in free-living environments we col-
lected data of 7 healthy participants (3 male, 4 female, aged
22.8± 1.8 years). Data were recorded by a wearable sensor
node (Portabiles GmbH, Erlangen, Germany) including an
IMU (3-axis accelerometer, 3-axis gyroscope) and an ECG
unit (1-channel ECG according to Lead I of Einthoven’s Tri-
angle) attached on a chest strap. All sensor data were logged
onto the internal storage of the sensor node with a sampling
frequency of 256 Hz. After data collection, raw data were
transmitted to a computer as binary files for subsequent data
processing. The study protocol was approved by the Ethics
Committee of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (number 106 13B).

Our study protocol was divided into three parts:
1) Lab Recording I (Lab I): The study started at the lab-

oratory between 9 a.m. and 10 a.m. All participants provided
written informed consent before testing. Moreover, partici-
pants were asked to fill out a demographic questionnaire and
the Physical Activity Readiness Questionnaire (PAR-Q) [12]
to exclude participants with insufficient physical condition.
In addition to the sensor, participants received a smartwatch
with an event logging application for the free-living section.
The procedure at the lab was comprised of two repetitions of
the Schellong test [7]. One repetition consists of five minutes
of sitting to allow the cardiovascular system to adapt to the
sitting position, followed by standing up and remaining in
a standing position for two minutes while ECG data were
continuously acquired.

2) Home Recording (Home-Free/Home-Tests): After fin-
ishing the Lab I session, participants immediately started the
collection of free-living data. Data were recorded for four
days in the participants’ everyday life. To improve compara-
bility between the data collected at home and those during
the lab sessions, participants performed the same procedure
of standardized tests (two repetitions of the Schellong test) at
home three times a day: between 7 a.m. and 9 a.m., between
11 a.m. and 1 p.m. and between 5 p.m. and 7 p.m. Participants
were instructed to label the beginning of each standardized
test procedure at home using the logging application on the
smartwatch. Home data collected during free-living activities
are denoted as Home-Free, whereas data collected during
standardized tests are denoted as Home-Tests.

3) Lab Recording II (Lab II): At the end of the study
participants repeated the lab procedure once again between
12 p.m. and 2 p.m.

B. Data Processing

The ECG was used to calculate HR and HRV. RR intervals
were computed based on the R peaks extracted from the
ECG signal after filtering and applying the QRS detection
algorithm by Hamilton [13] provided by the Neurokit2

library [14]. As final step, artifacts in RR intervals were
reduced by removing RR intervals corresponding to an HR
lower than 45 bpm or higher than 200 bpm, as well as by
applying statistical outlier removal methods, i.e, RR intervals
based on a z-score ≥ 1.96. Removed RR intervals were
replaced by linear interpolation. For computing HRV, R-
peaks locations were corrected using an algorithm presented
by Lipponen et al. [15].

Acceleration data were processed to detect PTs from free-
living data. Whenever a PT was detected, we assessed the
OR. We used an algorithm proposed by Adamowicz et al. for
PT detection [16]. Even though the algorithm was originally
designed for sensors placed at the lower back, a pre-study
also proved its applicability to reliably detect PTs from
acceleration data acquired by a chest-worn sensor.

III. EVALUATION

A. ECG Measures

For quantifying ORs and computing relevant measures,
we extracted the signal intervals one minute before and after
each PT detected by the algorithm. We additionally selected
and computed HRV measures according to guidelines by
the HRV Task Force [17], as well as the change of these
measures during a PT. Due to the fast cardiac recovery after
a PT, only a short ECG interval is of interest to assess the
OR. Therefore, we used the time-domain HRV measures
RMSSD (root mean square of successive differences) and
pNN20 (percentage of successive RR intervals ≥ 20 ms).

B. Statistics

Pairwise t-tests were used to determine significant changes
in HR(V) before and after PTs over all participants.
Repeated-measures ANOVA was used to determine differ-
ences in the magnitude of OR between the different recording
settings. As post-hoc tests, pairwise t-tests were used to
identify individual group differences. The significance level
was set at α = 0.05. Effect sizes of ANOVA are reported
as η2p and of pairwise t-tests as Cohen’s d. All methods
for statistical analysis were performed in Python using the
Pingouin library [18]. In all Figures and Tables we used
following notation to indicate statistical significance: ∗p <
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

IV. RESULTS

Due to problems during data acquisition, the data of
one participant had to be completely and the data of three
participants had to be partially removed. In total, 152 hours
of recording, corresponding to 189 PTs detected by the
algorithm (Lab I: 10, Lab II: 12, Home-Tests: 81, Home-
Free: 86), were analyzed for ORs. On average, PTs induced
HR increases throughout all recording settings. Significant
increases were observed for Lab II, Home-Tests, Home-Free,
but not for Lab I (Table I). The absolute change in HR
caused by PTs was highest during Home-Tests (Figure 1,
left). HRV parameters showed significant decreases in both
Home settings except for RMSSD in Home-Free, whereas
a significant change at the laboratory was only found for
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Fig. 1. Absolute change in HR before and after PTs (left) and HRRest

before PTs (right) for all participants and the different recording settings,
respectively. Home-Tests are denoted as Tests; Home-Free are denoted as
Free.

RMSSD at Lab I (Table I). HRRest was highest for Lab II
(89.5±7.1 bpm) and lower for Home-Tests (74.4±8.0 bpm),
Home-Free (76.3 ± 7.9 bpm) and Lab I (75.5 ± 7.8 bpm).
On average, participants showed lower HRRest during Home-
Tests and Home-Free than at the laboratory (Figure 1, right).

TABLE I
PAIRWISE T-TESTING OF HR(V) BEFORE AND AFTER POSTURAL

TRANSITIONS.

Measure Setting DoF t p Cohen’s d

HR

Lab I 3 -2.691 0.074 -1.277
Lab II 4 -6.334 0.003 ** -1.523
Home-Tests 5 -9.110 < 0.001 *** -1.614
Home-Free 5 -13.385 < 0.001 *** -1.302

pNN20

Lab I 3 2.814 0.067 1.597
Lab II 4 0.221 0.836 0.038
Home-Tests 5 10.281 < 0.001 *** 0.989
Home-Free 5 3.612 0.015 * 0.574

RMSSD

Lab I 3 -3.242 0.047 * -1.918
Lab II 4 1.306 0.261 0.405
Home-Tests 5 -2.966 0.031 * -0.579
Home-Free 5 0.562 0.598 0.184

ANOVA revealed significant differences of HRRest

between the different recording settings (F (3, 15) =
37.64, p < 0.001, η2p = 0.882). However, no significant
difference was found for OR-induced changes in HR between
the different recording settings (F (3, 15) = 1.05, p =
0.399, η2p = 0.174). As the data of Lab II for one participant
had to be removed, Missing values were replaced by the
population mean of this recording setting. For all days,
except for Day 4, the change in HR during Home-Tests was
higher than the change in HR in Home-Free. Furthermore,
high fluctuations of the data between the recording days,
within one day and between participants are noticeable
(Figure 2).

V. DISCUSSION

The main objective of our study was to investigate the
feasibility of assessing HR(V) in response to PTs in real-
world settings and to evaluate the potential of complement-
ing clinical snapshot measurements for detecting orthostatic
dysregulations by home monitoring data. Results indicate a
significant increase in HR after PTs in both Home-Tests and
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Fig. 2. Absolute change in HR during PTs within the day (left) and over
the study procedure (right). Data were averaged per participant and Time
of Recording, respectively. Values are depicted as mean and standard error
over all participants.

Home-Free data and, therefore, correlate with results of prior
investigations in laboratory environments [19]. Analogously,
HRV measurements show the tendency to decrease. The in-
crease in HR and decrease in HRV measures reflect increased
sympathetic activity, confirming our goal to apply unobtru-
sive HR(V) assessment at home for examining cardiovascular
reactivity in response to PTs.

Comparing the HR increase between the different record-
ing settings revealed a considerably higher increase in
HR during Home-Tests than during Lab recordings, which
might be attributed to the “white coat syndrome” due to
the unknown lab environment. This can also be observed
when examining HRRest between the different recording
settings. On average, participants showed a higher HRRest

at the Lab II than during both Home settings. However,
the average HRRest in Home-Tests was comparable to the
average HRRest during Lab I. Moreover, there was an
unexpected difference between the HRRest of Lab I and
Lab II. This may be attributed to the participants’ leisure
activities, such as intense physical activity before a PT or
the consumption of alcohol the night before, as both directly
affect HRRest [20], [21].

The high intra- and inter-day variations, as depicted in
Figure 2, can be caused by many different factors, such as
stress and negative emotions, both decreasing HRV [22].
Because the human body is exposed to many different
social and environmental situations, large intra- and inter-
day HR(V) fluctuations are common. Since HR(V) is such
a sensitive measure, recordings should always be performed
for several days, preferably at the same time of day, in order
to reduce such variations. In future studies, a diary should
be kept, including physical activity, sleep time and alcohol
consumption, to provide more information about the source
of intra- and inter-day fluctuations. The high inter-participant
variances might be caused by different physical conditions
of the participants and different HRRest. Therefore, longer
lasting studies with more participants are required to further
increase the confidence in the described findings.

Furthermore, standardized tests at home showed a more
pronounced OR than measurements in a real-world environ-
ment, except for Day 4 (Figure 2). Therefore, for unobtrusive
HRV assessment at home, it might not be necessary to
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actually perform a continuous free-living data acquisition
throughout the whole day. Based on our findings, it might
be sufficient to conduct standardized tests at home at defined
times, potentially complemented by unsupervised assess-
ments during the morning hours.

Since this study was solely conducted with young healthy
adults in good physical condition, the results need to be
validated with cohorts of patients suffering from autonomic
nervous disorders and age-matched controls. However, the
aim of this first pilot study was to investigate whether it is
generally possible to achieve comparable results at home as
in the clinic.

Study results also showed some PT events with negative
HR changes. As the study was conducted with healthy
participants, HR decreases were not expected. A more de-
tailed investigation of these events revealed that negative HR
changes were either the result of incorrect PTs (e.g. false
positives or delays in detection) or due to vigorous physical
activity before a PT. Even though we solely considered PTs
which were preceded by five minutes of sitting, following the
guidelines for clinical examinations, for our analysis, the HR
can continuously decrease within 30 min after exercise until
reaching rest values [21]. Hence, this cooling-down effect
might overlay the PT-induced HR increase. Future work
should therefore include activity detection into the analysis
pipeline and only consider PTs if no moderate or vigorous
physical activity occurred during at least 30 min before the
event.

VI. CONCLUSION AND OUTLOOK

In this work we demonstrated that free-living HR(V)-
based assessment of ORs is possible, providing comparable
results to supervised assessments in clinical environments.
Given further validation with patients, our approach might
be promising for improving the early diagnosis of OD and
neurodegenerative diseases. Study results further indicate
that continuous free-living monitoring of HRV parameters
might not be necessary, but performing standardized tests at
predefined times is sufficient for reliable OR assessment.

In future work we plan to conduct a study using a similar
study protocol with patients suffering from dysfunctions of
the ANS such as PD. In order to provide more information
about inter- and intra-day fluctuations, confounding variables
such as exercise, medication and daily living activities should
be recorded in a diary. In the context of this work, we only
considered changes in HR(V) for the classification of OD,
as unobtrusive continuous blood pressure measurement is
challenging due to motion artifacts. However, continuous
measurement of pulse transit time to estimate PT-induced
blood pressure changes might be a valuable additional data
source to provide a more reliable assessment of OR and
should be included in future studies.
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