
 

 

 

  

Abstract— Video-based monitoring of patients in the neonatal 

intensive care unit (NICU) has great potential for improving 

patient care. Video-based detection of clinical events, such as 

bottle feeding, would represent a step towards semi-automated 

charting of clinical events. Recording such events 

contemporaneously would address the limitations associated 

with retrospective charting. Such a system could also support 

oral feeding assessment tools, as the patient’s feeding skills and 

nutrition are pivotal in monitoring their growth. We therefore 

leverage transfer learning using a pretrained VGG-16 model to 

classify images obtained during an intervention, to determine if 

a bottle-feeding event is occurring. Additionally, we explore a 

data expansion technique by extracting similar-feature images 

from publicly available sources to supplement our dataset of real 

NICU patients to address data scarcity. This work also visualizes 

and quantifies the gap between the source domain (ImageNet 

data subset) and target domain (NICU dataset), thereby 

illustrating the impact of expanding our training set for 

knowledge transfer proficiency. Results show an increase of over 

18% in sensitivity after data expansion. Analysis of network 

activation maps indicates that data expansion is able to reduce 

the distance between the source and target domains. 

I. INTRODUCTION 

Continuous monitoring of patients in the neonatal intensive 
care unit (NICU) has been increasingly studied in recent years. 
Many research groups have implemented non-contact 
monitoring systems for vital signs monitoring [1], [2], motion 
detection [3], [4], and pain assessment [5], to name a few. 
More recent non-contact studies have further analyzed the 
NICU environment by tracking the face of the patient [6], 
detecting patient presence in the bed [1], [7] and detecting 
clinical interventions [1]. During continuous monitoring, 
clinical interventions can sometimes pose a problem in the 
development of non-contact monitoring systems since clinical 
staff can naturally occlude portions of the patient.  In many 
cases, intervention periods are actually excluded from analysis 
[1]–[4]. Clinical interventions may represent pivotal moments 
in newborns’ continuous care in the NICU; further 
investigation of these events is therefore warranted. Routine 
care events include diaper change, feeding, checking 
temperature, checking vital signs, weighing, changing sensors, 
to name a few. All interventions must be carefully documented 
in the patient’s chart indicating the date, time, personnel in 
charge, and any relevant details [8]. Such documentation is 
important since it is the primary source of communication 
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between clinical staff. Ideally, all events would be documented 
contemporaneously. Realistically, the elevated nurse 
workload, combined with patient acuity requiring more time 
for patient care, often results in retrospective charting. 
Retrospective documentation is problematic since it is often 
incomplete or inaccurate. Therefore, a clinical assistive tool to 
automatically identify and chart interventions could help 
address this issue.  

Previous studies have established the importance of 
monitoring the oral feeding process (breast-feeding and bottle-
feeding) in newborns less than 6-7 months old [9]–[11]. In 
fact, newborns’ acquired feeding skills are crucial in these first 
few months as they directly impact their nutrition and brain 
development, especially for those born prematurely or those in 
critical health condition. Assessment tools have then been 
implemented to help guide nurses or parents in evaluating the 
newborn’s feeding skills [12]–[14]. This includes evaluating 
the newborn’s state when bottle-fed, such as muscle tone, 
readiness, sucking, swallowing, breathing, fatigue, and oral-
motor patterns. These assessment tools can help in deciding 
when the patient can safely be discharged from the hospital, 
and for transitioning to solid food in the NICU or at home [11].  

This study focuses on video-based detection of bottle-
feeding interventions as a step towards automated clinical 
documentation in the NICU, while supporting neonatal oral 
feeding assessments. To this end, we aim to identify in each 
image whether a bottle-feeding event is occurring or not. 
Recent neonatal monitoring studies have reported detection of 
clinical interventions; however, no specific detection of a 
particular intervention types, such as feeding, has been 
investigated [1].  

We herein leverage transfer learning on a pretrained neural 
network, VGG-16 [15], to classify “bottle-feeding” vs “no-
feeding” events in an intervention image. In its most basic 
definition, transfer learning describes a process in which some 
pertinent information is passed from a certain source domain 
to a target domain [16]. In cases where both domains have 
labeled data, this procedure called inductive transfer learning 
is often performed by transferring pre-learnt weights from a 
model to another domain [17]. Both domains are assumed to 
be similar, so that key features can be reused from a source 
task to perform a new target task, instead of learning all model 
weights from scratch. Model parameters can then be fine-
tuned to be tailored for the target task. Often the volume of 
available data in the target domain is significantly smaller than 
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the source domain. Transfer learning can then help in cases of 
data scarcity, which often occurs in medical applications due 
to time, cost, and privacy constraints. Recent advances in 
convolutional neural network (CNN) models have led to 
significant improvements in image analysis tasks, such as 
image classification [18], object detection [19], and scene 
recognition [20]. These advances have been attributed to 
improved algorithms, increased computational power 
(especially GPU), and increased access to labelled image 
datasets. Multiple studies have leveraged the ImageNet dataset 
comprising more than 14 million annotated images, where a 
subset of ~1 million images across 1000 different classes is 
often used to train networks [21]. Given the large amount of 
data, this dataset has been widely used for implementing deep 
image classification models, resulting in powerful state-of-the-
art deep neural networks including the VGG-16 model. 
Examples of classes used to train this network include 
common objects such as bicycle, car, dog, and table.  

From the ImageNet dataset used to train the VGG-16 
model, some classes included the cooccurrence of a baby and 
an adult, such as cradle, diaper, or bib. These object classes 
are present in both our positive and negative classes, however, 
the additional occurrence of a nursing bottle would classify our 
image as “bottle-feeding” if the nursing bottle is present, and 
“no-feeding” otherwise. Can a network, pretrained in a source 
domain devoid of bottle-feeding events, efficiently classify 
bottle-feeding events? Transfer learning can partially address 
the domain gap [17], but we have very limited data available 
in the target domain. We herein address this question by 
adding a third domain comprising images extracted from 
publicly available sources, similar in key features to a bottle-
feeding intervention image. This supplemented data domain 
will help bridge the gap between the source and target domains 
for knowledge transfer proficiency, as depicted in Fig. 2. To 
this end, we investigate how the knowledge acquired from 
millions of images in a source domain, complimented by an 
expanded data domain, can be transferred to a significantly 
smaller dataset in the target domain. We evaluate the impact 
of data expansion in transfer learning to address data scarcity 
in the target domain. We additionally visualize and quantify 

that gap to demonstrate the influence of the data expansion 
domain. 

II. METHODS 

A. Transfer Learning & Data Expansion 

As previously mentioned, to perform classification of 
“bottle-feeding” vs “no-feeding” events, we selected the 
pretrained VGG-16 model due to its strong performance on 
previous image classification tasks [18]. The model comprises 
13 convolutional layers, often referred to as the "feature 
extraction" layers, followed by three densely connected layers 
responsible for arriving at a final classification. Model 
parameters were tuned using preliminary experiments. 
Training of images involved a mini-batch size of 32 with a 
learning rate of 1e-5 over 20 epochs. Due to a class imbalance 
among images, a weighted classification layer was used to 
emphasize the minority class. The model is evaluated using 5-
fold cross-validation where different patients were selected per 
fold. Additionally, given that “bottle-feeding” event were 
observed in only 6 out of 27 patients, these patients’ data were 
distributed separately among the five distinct folds (one fold 
included two of these patient data). 

During model training, data augmentation is used to 
improve model performance and generalization [22], [23]. 
Common augmentation techniques aim to create synthetic 
copies of the original images through image transformation. 
These include translation, scaling, reflections, rotation, or 
shearing. Training images were therefore augmented using 
reflections along the X and Y axis, and rotations from 0-360 
degrees. Due to the nature of our dataset, where objects of 
interest are often small or can be found near the edges of the 
image, we refrained from performing translation, scaling or 
shearing transformations.  

While traditional data augmentation produces synthetic 
copies of original images, we also explore a data expansion 
approach to extract similar-feature images from external 
sources to further supplement the training dataset. As 
previously mentioned, collecting and labelling clinical data is 
a laborious task due to ethics protocols, low patient 
recruitment rates, equipment cost, extensive data collection 

 

Fig.1 Transfer learning model trained on VGG-16 using a subset of ImageNet [15], [21] with data expansion from publicly available images [24]*. 
*Due to licensing issues, the figures portrayed were obtained from https://pixabay.com/ and only shown here for illustration purposes. 
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procedures followed by data storage, management, security, 
and privacy, to name a few. This often results in unique and 
rich data, albeit in limited quantity. We address this issue by 
gathering publicly available images from Flickr [24] by 
carefully searching and curating images showing similar 
objects and contexts. To this end, we obtain supplemented data 
from similar-feature images sufficient for performing binary 
classification in the target domain when the source domain is 
significantly deficient in data from one of these classes. 

The BFID model (bottle-feeding intervention detection) 
was trained and tested on our original dataset. Then, the 
BFIDexp (BFID with data expansion) model was trained on 
our expanded dataset, including Flickr images, and tested on 
our original dataset. Model performance is compared before 
and after data expansion. As a baseline method, we tested our 
dataset on the pretrained VGG-16 model using baby- and 
bottle-related classes drawn from the model's 1000 classes. 
These classes were extracted from a more complete list of 
words in ImageNet, which was structured according to the 
WordNet hierarchy [25]. WordNet is a lexical database of 
English words grouped into synsets or synonym sets if they 
share similar concept and semantic relations. Pictorially, these 
relations can therefore be demonstrated in a tree map, and a 
subset of this tree highlighting a few classes of interest are 
depicted in Fig. 3. Here, we have added a feeding bottle class 
to show word similarity. A conceptual relation can be drawn 
from the tree map, and we additionally visually inspected a 
subset of VGG-16 images from related classes to inform on 
feature-based relations. These classes were selected due to the 
environment, a piece of clothing, or an object typically seen 
with babies. To this end, we can curate a list of VGG-16 
classes related to our data, as demonstrated in Fig. 3. From 
both representations, we can clearly see the close conceptual-
semantic relationship between crib, cradle, and bassinet class, 

while diaper, pajama, and bonnet share a feature relationship 
to baby-related images. Most of these corresponding VGG-16 
images contained a baby and sometimes an adult present but 
no nursing bottle, thereby similar to our “no-feeding” class. As 
for the "bottle-feeding" class, bottle-related classes such as 
water bottle, pop bottle, beer bottle, and wine bottle shared 
semantic relationships with each other and close relations to a 
feeding bottle object. However, since very few VGG-16 
images contained our baby + reaching hand + bottle condition, 
this pretrained model contained negligible association with our 
bottle-feeding images. As discussed below, the baseline 
prediction model labels an image as “bottle-feeding” if any of 
the bottle-related object classes are detected in the image. 

All models are evaluated using the following performance 
metrics among the total number of images per fold, n, where 
the positive class corresponds to “bottle-feeding” events; 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)    (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)    (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)    (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/ ∑ 𝑛    (4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
)    (5) 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁 − 𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   (6) 

Models were trained on MATLAB using Compute Canada 
resources, running on the Cedar v100l cluster [26]. 

B. Domain Distance Mapping 

As previously mentioned, transfer learning can be useful in 
cases where the source domain contains a large amount of 
labeled data, to extract and transfer that knowledge to a smaller 
amount of labeled data. To this end, we repurpose the source 
task (classification of 1000 classes from VGG-16 model) to a 
new target task (classification of bottle-feeding interventions). 
Both domains are typically assumed to be similar; however, it 
is not always the case. This study presents such a scenario 
where the dataset used to train the VGG-16 model shares more 
similarity with the “no-feeding” class than the “bottle-feeding” 
class, as qualitatively demonstrated by Fig. 1. Although both 
classes share similar features from the baby, nurse, and overall 
bed environment, the principal distinction remains in the 
presence or absence of a nursing bottle. Supplemental training 
data using similar-feature images including a nursing bottle 

 

Fig.3 Concept relations from tree map of some VGG-16 classes. Feature relations from description of 7 baby- and 4 bottle-related classes.  

 

Fig.2 Similar-Feature Domain Expansion. Dots represent the negative 
class “no-feeding” and stars the positive class “bottle-feeding”. Data 

expansion domain is proposed here for augmented knowledge transfer. 
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can then bring both distributions closer together. The distance 
between domains can in fact be estimated for the BFID and 
BFIDexp models. Measuring distances between domains is 
commonly performed in domain adaption, which is an 
unsupervised approach to transfer learning used when the 
source domain has labeled data, but the target domain does not 
[17], [27]. Domain adaptation seeks to minimize the gap 
between domain distributions during training by learning 
shared key features.  More recently, this technique has also 
been used in multi-source domain adaptation where labeled 
data originate from multiple sources [28]. We here leverage 
this concept to measure the distances from the source domain 
to the domains of BFID or BFIDexp models. Doing so 
demonstrates how the similar-feature data expansion can help 
narrow the distances between the source and target domain. 

To quantify and visualize the domain distances, feature 
maps from the BFID and BFIDexp models are individually 
extracted. These correspond to the activation obtained across 
all training samples and maps these data to the feature space. 
In order words, the stronger an activation in an area of the 
image, the greater the number of detected features in that area. 
Given that activation maps are provided as a greyscale image, 
the Otsu thresholding technique is used to differentiate 
between high and low intensities. The resulting blobs represent 
areas of heightened activation. Since the principal difference 
between the “bottle-feeding” and “no-feeding” events is the 
presence of a nursing bottle, we can estimate the domain 
distance within the “bottle-feeding” class as the distance 
between the centroid of the nearest detected blob in the feature 
map and the actual nursing bottle object. The closer the blob 
to the bottle, the closer the domains.  

To measure domain distances, all nursing bottles in our 
image dataset were first manually segmented and represented 
by their centroid. The domain distance is measured by the 
Euclidean distance (7), (8) between the bottle and feature map 
centroids, since previous domain adaptation studies showed 
negligible difference in domain distance mapping when using 
different distance metrics [27], [28]. When more than one 
activation is detected (i.e., could detect two different objects) 
the closest activation to the object is selected.  

Domain distance mapping can also be visualized per image 
by overlaying feature maps, gold standard bottle centroid, and 
distances on the original image. By visualizing these data, we 
can examine the impact of expanding our model using similar-
feature data by evaluating changes in activations from feature 
maps. Domain distance mapping is evaluated using the 
%closer performance metrics is the percentage of closer 
bottle-activation distances in BFIDexp compared to BFID 
among bottle-containing images. Additionally, the 
pixelDistance (9) calculates how much closer the activation is 
to the bottle object in number of pixels using the following 
metrics: 

𝑑𝑖𝑠𝑡𝐵𝐹𝐼𝐷 = √(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐵𝐹𝐼𝐷 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑏𝑜𝑡𝑡𝑙𝑒)2    (7) 

𝑑𝑖𝑠𝑡𝐵𝐹𝐼𝐷𝑒𝑥𝑝 = √(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐵𝐹𝐼𝐷𝑒𝑥𝑝 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑏𝑜𝑡𝑡𝑙𝑒)2  (8) 

𝑝𝑖𝑥𝑒𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑖𝑠𝑡𝐵𝐹𝐼𝐷 − 𝑑𝑖𝑠𝑡𝐵𝐹𝐼𝐷𝑒𝑥𝑝   (9) 

C. Dataset  

 Data from 27 patients admitted to the NICU of the 

Children’s Hospital of Eastern Ontario (CHEO) were used in 

our dataset. This study was approved by the Research Ethics 

Boards of both the hospital and Carleton University. As part 

of a larger overarching study, six hours of data were collected 

per patient while a researcher carefully annotated all events 

occurring at the patient’s bedside using a custom Android 

App [29]. The start and stop times for all intervention events 

were annotated, including bottle-feeding interventions. A 

depth-sensing camera, the Intel RealSense SR300 camera 

[30] was securely mounted at the top of the bed (incubator, 

crib, or overhead warmer) to record the patient and the NICU 

bed environment. To ensure variations among images, one 

image was extracted every 30 seconds. All image sizes are 

480x640 and only the color data from the camera were 

analyzed. Given that our dataset shares similar features (e.g., 

patient present, a hand from the nurse or parent reaching into 

the frame, NICU bed environment), an image is classified as 

“bottle-feeding” if a nursing bottle is present at or near the 

patient’s mouth. If the nursing bottle is absent, the image is 

classified as “no-feeding”. Bottle-feeding events were only 

seen in six of out of the 27 patients. “No-feeding” events from 

these six patients were also extracted during other 

interventions. Other patients were fed by nasogastric tube or 

breast-fed. The complete dataset is summarized in Table I. To 

supplement these hospital-based images, we extracted Flickr 

images showing similar objects and context in the scene using 

the search word “bottle feeding baby”, as depicted in Fig. 1. 

To simulate our CHEO data, a bottle-feeding image was 

included if it contained a baby, a hand reaching into the frame, 

and a nursing bottle at or near the baby’s mouth. The image 

environment could differ, where the baby would be placed on 

a pillow, blankets, a cradle, a feeding table, a baby bouncer, 

or in someone’s arms. Images showing an adult person’s face 

were excluded to closely simulate the NICU bed environment. 

 

TABLE I.  DATASET BREAKDOWN 

Class 

Data source 

CHEO Flickr 

#images #patients #images #subjects 

Bottle-feeding 73 6 60 60 

No-feeding 1187 27 0 0 

Total 1260 27 60 60 

 

TABLE II.  BOTTLE-FEEDING INTERVENTION DETECTION 

Model 
Evaluation Metrics (%) 

Sens Spec Prec Acc F1 MCC 

Base 09.59 98.90 35.00 93.73 15.05 15.88 

BFID 32.88 

±1.94 

91.41 

±0.72 

19.10 

±1.28 

88.02 

±0.64 

24.14 

±1.28 

18.93 

±1.44 

BFID exp 51.51 

±4.06 

85.96 

±3.33 

18.94 

±3.68 

83.96 

±3.13 

27.54 

±4.10 

24.11 

±4.44 

III. RESULTS 

In this section, transfer learning results for all models are 

reported. In particular, the impact of data expansion on the 

knowledge transfer using the pretrained VGG-16 network is 

demonstrated. The domain distance mapping concept is 

finally presented to support and further explain our findings. 
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A. Transfer Learning & Data Expansion 

As a baseline, the VGG-16 model was directly applied to 

our dataset and the top five predicted object classes were 

extracted since multiple objects can be found in the scene. 

This 1000-classification model outputs seven baby-related 

object classes and four bottle-related object classes. If the 

predicted object classes contained baby-related AND bottle-

related classes, they were classified as "bottle-feeding". 

Otherwise, they were classified as "no-feeding".  

In comparison with the two transfer learning models, the 

baseline method performs quite poorly, as depicted in Fig. 4. 

Unsurprisingly, the baseline model has high specificity and 

accuracy values, strongly suggesting that the model is 

classifying images as the "no-feeding" class and cannot detect 

bottle-feeding events. Although no bibs were used in clinical 

settings, that concept was useful due to association with 

babies, but it only appeared 1.9% of the time among the top-

5 predictions. Similarly, the oxygen mask class included a 

person wearing a breathing device and some images of babies 

on ventilator support leading to this class being predicted for 

40.6% of images. The most frequently detected baby-related 

class was diaper (77.4%), while water bottle was the most 

frequent bottle-related class (1.6%). 

In comparing with BFID and BFIDexp models, results 

demonstrated a significant increase in performance after 

transfer learning, and even further improvement after similar-

feature data expansion is applied. As displayed in Table II 

transfer learning results overperform the baseline and overall 

results are better for the BFIDexp compared to BFID, 

especially in sensitivity (18.63% increase) and F1-score 

(3.4% increase). These two metrics are most pertinent in 

evaluating our methods, given the high class imbalance and 

the greatest concern in detecting bottle-feeding events.  

These findings thus corroborate how the shortage of 

"bottle-feeding" images used in training the VGG-16 model 

impacts the knowledge transfer ability to our classification 

task. Given that the "bottle-feeding" and "no-feeding" classes 

share many similar features, distinguishing between the 

absence or presence of the nursing bottle object is a difficult 

task to achieve. We have however demonstrated that our 

similar-feature data expansion technique can solve this issue. 

B. Domain Distance Mapping 

To evaluate the distance between the source and target 

domain, we opted for a heuristic approach where we measure 

the distance between the object of interest (nursing bottle) and 

the models’ strongest activation from the feature map. When 

identifying key features of an object, we can naively consider 

it as a whole or focus on the more salient parts. For example, 

when seeing a torch, we typically focus our attention on the 

flame, not the handle. Similarly, we explore if the attention in 

a nursing bottle is focused on the whole bottle or the most 

salient part, i.e., the bottle cap. Both objects are manually 

annotated for evaluation. 

Results reveal that the BFID and BFIDexp models focused 

more on the bottle cap than the entire bottle. This suggests 

that the bottle cap shows greater saliency information 

attributed to the bottle object, as hypothesized by our torch 

object analogy. In fact, the BFIDexp model detected the bottle 

cap in ~60% of the images, compared to ~54% for the BFID 

model. Interestingly, both models sometimes detected the 

soother object which shares very similar features to a nursing 

bottle cap (~7% for BFIDexp and ~11% of images for BFID).  

In many cases, the BFID model still detected the soother, 

while BFIDexp model learned to detect the bottle cap instead. 

Some of these examples are illustrated in Fig. 5. This shows 

how data expansion can further teach our classifier to detect 

the correct object among two very similar ones. Spatially 

within the image, on average the BFIDexp model detected an 

object at 111 pixels in distance to the nursing bottle while the 

BFID model detected the bottle at 126 pixels. This averaged 

16-pixel difference may seem small but it was observed with 

 
Fig.5 Domain Distance Mapping. Better performing model is A) BFIDexp, B) BFID, C) both, and D) neither. The soother is detected in E-F) by both 

models, G-H) in BFID while BFIDexp detects the bottle cap. 1-2) In absence of a bottle, both models detect other objects (ex: patient, nurse, cables). 

 
Fig.4 Bottle-Feeding Intervention Detection Results.  
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a maximum of 254 pixels when the BFID model is closer, and 

511 pixels for the BFIDexp model (over twice as close). Our 

data expansion technique thus positively influences our 

model, given the closer distance to the bottle object. Other 

detections would include the patient’s or nurse’s arm or hand, 

the patient’s head, toy, blankets, or cables, with comparable 

results from both models, and in absence of the bottle. 

IV. DISCUSSION 

Overall, we obtained promising findings from our similar-
feature data expansion method. When applying this technique, 
it is important to exclude the supplemented data in the 
evaluation since it could systematically learn to distinguish 
between one’s own dataset and the outside sources. Future 
work will transition from classification to object detection, to 
further analyze the entire clinical scene (e.g., within bottle-
feeding event, can we identify periods of active feeding vs. 
pauses). Our dataset solely included intervention images 
where the patient and nurse can be detected in the scene, and 
the occurrence of the nursing bottle would distinguish between 
the “bottle-feeding” and “no-feeding” class. Other 
combinations could be investigated for detailed analysis (e.g., 
patient present and bottle near the baby but absent nurse could 
suggest a paused feeding event). This might require more 
complex video analyses such as action recognition techniques. 
Other intervention events such as dressing, diaper change, or 
changing sensors will likewise require an evaluation of a 
sequence of images to infer context. Although, it may be 
difficult to find videos from outside sources to apply our data 
expansion technique, the approach may still be applicable 
since video analysis models often leverage a feature extraction 
step trained using individual images before concatenating 
frames to identify patterns in video sequences.  

Our data expansion method can provide content but not 
always context. For example, an image of an adult holding a 
baby in one hand and a beer bottle in the other could satisfy 
our inclusion criteria (bottle & baby). Likewise, a photo of a 
child playing with empty beer bottles. However, these images 
have different meaning than a nursing baby. The original data 
collected dataset remains important to gain context for the 
classification task, while our similar-feature data expansion 
technique adds sufficient relevant content to address data 
scarcity and class imbalance. Not only is it time and cost 
effective compared to collecting new data, but it can 
substantially improve results for a difficult context-rich 
classification task. Ultimately, a future deployment of our 
model could improve patient care by assisting nurses in oral 
feeding assessments and documenting bottle-feeding events. 
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